- Home
- Find Gizmos
- Browse by Standard (USA)
- Minnesota Standards
- Mathematics: Precalculus
Georgia - Mathematics: Precalculus
GA--Standards of Excellence | Adopted: 2015
MGSE9-12.N.CN: : The Complex Number System
1.1: : Use properties of rational and irrational numbers.
MGSE9-12.N.CN.3: : Find the conjugate of a complex number; use the conjugate to find the absolute value (modulus) and quotient of complex numbers.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
1.2: : Represent complex numbers and their operations on the complex plane.
MGSE9-12.N.CN.4: : Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
MGSE9-12.N.VM: : Vector and Matrix Quantities
2.1: : Represent and model with vector quantities.
MGSE9-12.N.VM.1: : Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., 𝙫, |𝙫|, ||𝙫||, 𝘷).
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
MGSE9-12.N.VM.2: : Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
MGSE9-12.N.VM.3: : Solve problems involving velocity and other quantities that can be represented by vectors.
2D Collisions
Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview
Golf Range
Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview
2.2: : Perform operations on vectors.
MGSE9-12.N.VM.4: : Add and subtract vectors.
MGSE9-12.N.VM.4a: : Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
MGSE9-12.N.VM.4b: : Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
MGSE9-12.N.VM.5: : Multiply a vector by a scalar.
MGSE9-12.N.VM.5a: : Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as 𝘤(𝘷ₓ, 𝘷 subscript 𝘺) = (𝘤𝘷ₓ, 𝘤𝘷 subscript 𝘺).
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
2.3: : Perform operations on matrices and use matrices in applications.
MGSE9-12.N.VM.7: : Multiply matrices by scalars to produce new matrices.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
MGSE9-12.A.REI: : Reasoning with Equations and Inequalities
3.1: : Solve systems of equations
MGSE9-12.A.REI.8: : Represent a system of linear equations as a single matrix equation in a vector variable.
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
MGSE9-12.F.IF: : Interpreting Functions
4.1: : Interpret functions that arise in applications in terms of the context
MGSE9-12.F.IF.4: : Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
4.2: : Analyze functions using different representations
MGSE9-12.F.IF.7: : Graph functions expressed algebraically and show key features of the graph both by hand and by using technology.
MGSE9-12.F.IF.7e: : Graph trigonometric functions, showing period, midline, and amplitude.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
MGSE9-12.F.TF: : Trigonometric Functions
6.2: : Model periodic phenomena with trigonometric functions
MGSE9-12.F.TF.5: : Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.
Sound Beats and Sine Waves
Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview
6.3: : Prove and apply trigonometric identities
MGSE9-12.F.TF.8: : Prove the Pythagorean identity (sin A)² + (cos A)² = 1 and use it to find sin A, cos A, or tan A, given sin A, cos A, or tan A, and the quadrant of the angle.
Simplifying Trigonometric Expressions
Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
MGSE9-12.F.TF.9: : Prove addition, subtraction, double, and half-angle formulas for sine, cosine, and tangent and use them to solve problems.
Simplifying Trigonometric Expressions
Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Sum and Difference Identities for Sine and Cosine
Choose the correct steps to evaluate a trigonometric expression using sum and difference identities. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
MGSE9-12.G.GPE: : Expressing Geometric Properties with Equations
8.1: : Translate between the geometric description and the equation for a conic section
MGSE9-12.G.GPE.2: : Derive the equation of a parabola given a focus and directrix.
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
MGSE9-12.G.GPE.3: : Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.
Ellipses
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview
Hyperbolas
Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview
MGSE9-12.S.CP: : Conditional Probability and the Rules of Probability
9.1: : Use the rules of probability to compute probabilities of compound events in a uniform probability model
MGSE9-12.S.CP.8: : Apply the general Multiplication Rule in a uniform probability model, 𝘗(𝘈 and 𝘉) = [𝘗(𝘈)]x[𝘗(𝘉|𝘈)] = [𝘗(𝘉)]x[(𝘗(𝘈|𝘉)], and interpret the answer in terms of the model.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
MGSE9-12.S.CP.9: : Use permutations and combinations to compute probabilities of compound events and solve problems.
Binomial Probabilities
Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview
Permutations and Combinations
Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview
MGSE9-12.S.MD: : Use Probability to Make Decisions
10.1: : Calculate expected values and use them to solve problems
MGSE9-12.S.MD.2: : Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
MGSE9-12.S.MD.3: : Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
MGSE9-12.S.MD.4: : Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
10.2: : Use probability to evaluate outcomes of decisions
MGSE9-12.S.MD.5: : Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.
MGSE9-12.S.MD.5a: : Find the expected payoff for a game of chance.
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
MGSE9-12.S.MD.5b: : Evaluate and compare strategies on the basis of expected values.
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
MGSE9-12.S.MD.6: : Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
MGSE9-12.S.MD.7: : Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote