- Home
- Find Gizmos
- Browse by Standard (CAN)
- New Hampshire Standards
- Mathematics: 12th Grade Foundations for College Mathematics
Ontario - Mathematics: 12th Grade Foundations for College Mathematics
Ontario Curriculum | Adopted: 2010
A: : Mathematical Models
A.1: : evaluate powers with rational exponents, simplify algebraic expressions involving exponents, and solve problems involving exponential equations graphically and using common bases;
A.1.2: : simplify algebraic expressions containing integer exponents using the laws of exponents
Dividing Exponential Expressions
Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Exponents and Power Rules
Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview
Multiplying Exponential Expressions
Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
A.1.7: : solve exponential equations in one variable by determining a common base (e.g., 2 to the x power = 32, 4 to the (5x - 1) power = 2 to the (2(x + 11)) power, 3 to the (5x + 8) power = 27 to the x power)
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
A.2: : describe trends based on the interpretation of graphs, compare graphs using initial conditions and rates of change, and solve problems by modelling relationships graphically and algebraically;
A.2.2: : describe trends based on given graphs, and use the trends to make predictions or justify decisions (e.g., given a graph of the men’s 100-m world record versus the year, predict the world record in the year 2050 and state your assumptions; given a graph showing the rising trend in graduation rates among Aboriginal youth, make predictions about future rates)
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
A.2.3: : recognize that graphs and tables of values communicate information about rate of change, and use a given graph or table of values for a relation to identify the units used to measure rate of change (e.g., for a distance–time graph, the units of rate of change are kilometres per hour; for a table showing earnings over time, the units of rate of change are dollars per hour)
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
A.2.4: : identify when the rate of change is zero, constant, or changing, given a table of values or a graph of a relation, and compare two graphs by describing rate of change (e.g., compare distance–time graphs for a car that is moving at constant speed and a car that is accelerating)
Direct and Inverse Variation
Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview
A.2.5: : compare, through investigation with technology, the graphs of pairs of relations (i.e., linear, quadratic, exponential) by describing the initial conditions and the behaviour of the rates of change (e.g., compare the graphs of amount versus time for equal initial deposits in simple interest and compound interest accounts)
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
C: : Geometry and Trigonometry
C.1: : solve problems involving measurement and geometry and arising from real-world applications;
C.1.2: : solve problems involving the areas of rectangles, triangles, and circles, and of related composite shapes, in situations arising from real-world applications
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
C.1.3: : solve problems involving the volumes and surface areas of rectangular prisms, triangular prisms, and cylinders, and of related composite figures, in situations arising from real-world applications
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
C.3: : solve problems using primary trigonometric ratios of acute and obtuse angles, the sine law, and the cosine law, including problems arising from real-world applications, and describe applications of trigonometry in various occupations.
C.3.1: : solve problems in two dimensions using metric or imperial measurements, including problems that arise from real-world applications (e.g., surveying, navigation, building construction), by determining the measures of the sides and angles of right triangles using the primary trigonometric ratios, and of acute triangles using the sine law and the cosine law
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
C.3.5: : gather, interpret, and describe information about applications of trigonometry in occupations, and about college programs that explore these applications
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
D: : Data Management
D.1: : collect, analyse, and summarize two-variable data using a variety of tools and strategies, and interpret and draw conclusions from the data;
D.1.1: : distinguish situations requiring one-variable and two-variable data analysis, describe the associated numerical summaries (e.g., tally charts, summary tables) and graphical summaries (e.g., bar graphs, scatter plots), and recognize questions that each type of analysis addresses (e.g., What is the frequency of a particular trait in a population? What is the mathematical relationship between two variables?)
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
Histograms
Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
D.1.4: : create a graphical summary of two-variable data using a scatter plot (e.g., by identifying and justifying the dependent and independent variables; by drawing the line of best fit, when appropriate), with and without technology
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
D.1.6: : describe possible interpretations of the line of best fit of a scatter plot (e.g., the variables are linearly related) and reasons for misinterpretations (e.g., using too small a sample; failing to consider the effect of outliers; interpolating from a weak correlation; extrapolating nonlinearly related data)
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
D.1.7: : determine whether a linear model (i.e., a line of best fit) is appropriate given a set of two-variable data, by assessing the correlation between the two variables (i.e., by describing the type of correlation as positive, negative, or none; by describing the strength as strong or weak; by examining the context to determine whether a linear relationship is reasonable)
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
D.2: : demonstrate an understanding of the applications of data management used by the media and the advertising industry and in various occupations.
D.2.3: : interpret statistics presented in the media (e.g., the UN’s finding that 2% of the world’s population has more than half the world’s wealth, whereas half the world’s population has only 1% of the world’s wealth), and explain how the media, the advertising industry, and others (e.g., marketers, pollsters) use and misuse statistics (e.g., as represented in graphs) to promote a certain point of view (e.g., by making a general statement based on a weak correlation or an assumed cause-and- effect relationship; by starting the vertical scale on a graph at a value other than zero; by making statements using general population statistics without reference to data specific to minority groups)
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
D.2.4: : assess the validity of conclusions presented in the media by examining sources of data, including Internet sources (i.e., to determine whether they are authoritative, reliable, unbiased, and current), methods of data collection, and possible sources of bias (e.g., sampling bias, non-response bias, a bias in a survey question), and by questioning the analysis of the data (e.g., whether there is any indication of the sample size in the analysis) and conclusions drawn from the data (e.g., whether any assumptions are made about cause and effect)
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote