Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Utah Standards
  • Science: Chemistry

Utah - Science: Chemistry

Core Curriculum | Adopted: 2003

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

1: : Students will understand that all matter in the universe has a common origin and is made of atoms, which have structure and can be systematically arranged on the periodic table.


1.2: : Relate the structure, behavior, and scale of an atom to the particles that compose it.

1.2.a: : Summarize the major experimental evidence that led to the development of various atomic models, both historical and current.

Screenshot of Bohr Model of Hydrogen

Bohr Model of Hydrogen

Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Bohr Model: Introduction

Bohr Model: Introduction

Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.c: : Discriminate between the relative size, charge, and position of protons, neutrons, and electrons in the atom.

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.d: : Generalize the relationship of proton number to the element?s identity.

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

1.3: : Correlate atomic structure and the physical and chemical properties of an element to the position of the element on the periodic table.

1.3.a: : Use the periodic table to correlate the number of protons, neutrons, and electrons in an atom.

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

1.3.b: : Compare the number of protons and neutrons in isotopes of the same element.

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

1.3.c: : Identify similarities in chemical behavior of elements within a group.

Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

1.3.d: : Generalize trends in reactivity of elements within a group to trends in other groups.

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo

2: : Students will understand the relationship between energy changes in the atom specific to the movement of electrons between energy levels in an atom resulting in the emission or absorption of quantum energy. They will also understand that the emission of high-energy particles results from nuclear changes and that matter can be converted to energy during nuclear reactions.


2.1: : Evaluate quantum energy changes in the atom in terms of the energy contained in light emissions.

2.1.b: : Examine evidence from the lab indicating that energy is absorbed or released in discrete units when electrons move from one energy level to another.

Screenshot of Bohr Model of Hydrogen

Bohr Model of Hydrogen

Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Photoelectric Effect

Photoelectric Effect

Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and amount of light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies. 5 Minute Preview


Lesson Info
Launch Gizmo

2.1.d: : After observing spectral emissions in the lab (e.g., flame test, spectrum tubes), identify unknown elements by comparison to known emission spectra.

Screenshot of Bohr Model of Hydrogen

Bohr Model of Hydrogen

Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Bohr Model: Introduction

Bohr Model: Introduction

Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Star Spectra

Star Spectra

Analyze the spectra of a variety of stars. Determine the elements that are represented in each spectrum, and use this information to infer the temperature and classification of the star. Look for unusual features such as redshifted stars, nebulae, and stars with large planets. 5 Minute Preview


Lesson Info
Launch Gizmo

2.2: : Evaluate how changes in the nucleus of an atom result in emission of radioactivity.

2.2.b: : Interpret graphical data relating half-life and age of a radioactive substance.

Screenshot of Half-life

Half-life

Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives. 5 Minute Preview


Lesson Info
Launch Gizmo

2.2.c: : Compare the mass, energy, and penetrating power of alpha, beta, and gamma radiation.

Screenshot of Nuclear Decay

Nuclear Decay

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview


Lesson Info
Launch Gizmo

2.2.e: : After researching, evaluate and report the effects of nuclear radiation on humans or other organisms.

Screenshot of Nuclear Decay

Nuclear Decay

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview


Lesson Info
Launch Gizmo

3: : Students will understand chemical bonding and the relationship of the type of bonding to the chemical and physical properties of substances.


3.1: : Analyze the relationship between the valence (outermost) electrons of an atom and the type of bond formed between atoms.

3.1.a: : Determine the number of valence electrons in atoms using the periodic table.

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo

3.1.b: : Predict the charge an atom will acquire when it forms an ion by gaining or losing electrons.

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

3.1.c: : Predict bond types based on the behavior of valence (outermost) electrons.

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

3.1.d: : Compare covalent, ionic, and metallic bonds with respect to electron behavior and relative bond strengths.

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

3.2: : Explain that the properties of a compound may be different from those of the elements or compounds from which it is formed.

3.2.a: : Use a chemical formula to represent the names of elements and numbers of atoms in a compound and recognize that the formula is unique to the specific compound.

Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

4: : Students will understand that in chemical reactions matter and energy change forms, but the amounts of matter and energy do not change.


4.1: : Identify evidence of chemical reactions and demonstrate how chemical equations are used to describe them.

4.1.a: : Generalize evidences of chemical reactions.

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Equilibrium and Concentration

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview


Lesson Info
Launch Gizmo

4.1.b: : Compare the properties of reactants to the properties of products in a chemical reaction.

Screenshot of Equilibrium and Concentration

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview


Lesson Info
Launch Gizmo

4.1.c: : Use a chemical equation to describe a simple chemical reaction.

Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Equilibrium and Concentration

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview


Lesson Info
Launch Gizmo

4.1.d: : Recognize that the number of atoms in a chemical reaction does not change.

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

4.1.e: : Determine the molar proportions of the reactants and products in a balanced chemical reaction.

Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

4.1.f: : Investigate everyday chemical reactions that occur in a student's home (e.g., baking, rusting, bleaching, cleaning).

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo

4.2: : Analyze evidence for the laws of conservation of mass and conservation of energy in chemical reactions.

4.2.a: : Using data from quantitative analysis, identify evidence that supports the conservation of mass in a chemical reaction.

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo

4.2.b: : Use molar relationships in a balanced chemical reaction to predict the mass of product produced in a simple chemical reaction that goes to completion.

Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

4.2.c: : Report evidence of energy transformations in a chemical reaction.

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo

4.2.d: : After observing or measuring, classify evidence of temperature change in a chemical reaction as endothermic or exothermic.

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo

5: : Students will understand that many factors influence chemical reactions and some reactions can achieve a state of dynamic equilibrium.


5.1: : Evaluate factors specific to collisions (e.g., temperature, particle size, concentration, and catalysts) that affect the rate of chemical reaction.

5.1.a: : Design and conduct an investigation of the factors affecting reaction rate and use the findings to generalize the results to other reactions.

Screenshot of Collision Theory

Collision Theory

Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview


Lesson Info
Launch Gizmo

5.1.b: : Use information from graphs to draw warranted conclusions about reaction rates.

Screenshot of Collision Theory

Collision Theory

Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview


Lesson Info
Launch Gizmo

5.1.c: : Correlate frequency and energy of collisions to reaction rate.

Screenshot of Collision Theory

Collision Theory

Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview


Lesson Info
Launch Gizmo

5.1.d: : Identify that catalysts are effective in increasing reaction rates.

Screenshot of Collision Theory

Collision Theory

Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview


Lesson Info
Launch Gizmo

5.2: : Recognize that certain reactions do not convert all reactants to products, but achieve a state of dynamic equilibrium that can be changed.

5.2.a: : Explain the concept of dynamic equilibrium.

Screenshot of Equilibrium and Concentration

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Equilibrium and Pressure

Equilibrium and Pressure

Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview


Lesson Info
Launch Gizmo

5.2.b: : Given an equation, identify the effect of adding either product or reactant to a shift in equilibrium.

Screenshot of Equilibrium and Concentration

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Equilibrium and Pressure

Equilibrium and Pressure

Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview


Lesson Info
Launch Gizmo

6: : Students will understand the properties that describe solutions in terms of concentration, solutes, solvents, and the behavior of acids and bases.


6.2: : Summarize the quantitative and qualitative effects of colligative properties on a solution when a solute is added.

6.2.a: : Identify the colligative properties of a solution.

Screenshot of Freezing Point of Salt Water

Freezing Point of Salt Water

Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water. 5 Minute Preview


Lesson Info
Launch Gizmo

6.2.b: : Measure change in boiling and/or freezing point of a solvent when a solute is added.

Screenshot of Freezing Point of Salt Water

Freezing Point of Salt Water

Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water. 5 Minute Preview


Lesson Info
Launch Gizmo

6.3: : Differentiate between acids and bases in terms of hydrogen ion concentration.

6.3.a: : Relate hydrogen ion concentration to pH values and to the terms acidic, basic or neutral.

Screenshot of pH Analysis

pH Analysis

Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis: Quad Color Indicator

pH Analysis: Quad Color Indicator

Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview


Lesson Info
Launch Gizmo

6.3.b: : Using an indicator, measure the pH of common household solutions and standard laboratory solutions, and identify them as acids or bases.

Screenshot of Titration

Titration

Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis

pH Analysis

Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis: Quad Color Indicator

pH Analysis: Quad Color Indicator

Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview


Lesson Info
Launch Gizmo

6.3.c: : Determine the concentration of an acid or a base using a simple acid-base titration.

Screenshot of Titration

Titration

Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap