Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Mississippi Standards
  • Science: Physical Science

Mississippi - Science: Physical Science

State Frameworks | Adopted: 2008

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

2: : Describe and explain how forces affect motion.


2.a: : Demonstrate and explain the basic principles of Newton?s three laws of motion including calculations of acceleration, force, and momentum.

2.a.1: : Inertia and distance-time graphs to determine average speed

Screenshot of Distance-Time Graphs - Metric

Distance-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Distance-Time and Velocity-Time Graphs - Metric

Distance-Time and Velocity-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Free-Fall Laboratory

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview


Lesson Info
Launch Gizmo

2.a.2: : Net force (accounting for gravity, friction, and air resistance) and the resulting motion of objects

Screenshot of Atwood Machine

Atwood Machine

Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Free-Fall Laboratory

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview


Lesson Info
Launch Gizmo

2.a.3: : Effects of the gravitational force on objects on Earth and effects on planetary and lunar motion

Screenshot of Orbital Motion - Kepler's Laws

Orbital Motion - Kepler's Laws

Learn Kepler's three laws of planetary motion by examining the orbit of a planet around a star. The initial position, velocity, and mass of the planet can be varied as well as the mass of the star. The foci and centers of orbits can be displayed and compared to the location of the star. The area swept out by the planet in a given time period can be measured, and data on orbital radii and periods can be plotted in several ways. 5 Minute Preview


Lesson Info
Launch Gizmo

2.a.4: : Simple harmonic motion (oscillation)

Screenshot of Period of Mass on a Spring

Period of Mass on a Spring

Measure the period of a mass on the end of a spring. Determine the effects of gravitational acceleration, mass, and the spring constant on the period of the spring. Create an equation for the period of a spring given its mass and spring constant. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Period of a Pendulum

Period of a Pendulum

Practice measuring the period of a pendulum. Perform experiments to determine how mass, length, gravitational acceleration, and angle affect the period of a pendulum. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Simple Harmonic Motion

Simple Harmonic Motion

Observe two different forms of simple harmonic motion: a pendulum and a spring supporting a mass. Use a stopwatch to measure the period of each device as you adjust the mass hanging from the spring, the spring constant, the mass of the pendulum, the length of the pendulum, and the gravitational acceleration. 5 Minute Preview


Lesson Info
Launch Gizmo

2.b: : Explain the connection between force, work, and energy.

2.b.1: : Force exerted over a distance (results in work done)

Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo

2.b.3: : Net work on an object which contributes to change in kinetic energy (work-to-energy theorem)

Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo

2.c: : Describe (with supporting details and diagrams) how the kinetic energy of an object can be converted into potential energy (the energy of position) and how energy is transferred or transformed (conservation of energy).

Screenshot of Energy Conversion in a System

Energy Conversion in a System

A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Energy of a Pendulum

Energy of a Pendulum

Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inclined Plane - Sliding Objects

Inclined Plane - Sliding Objects

Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Roller Coaster Physics

Roller Coaster Physics

Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview


Lesson Info
Launch Gizmo

2.d: : Draw and assess conclusions about charges and electric current.

2.d.2: : Elements in an electric circuit that are in series or parallel

Screenshot of Advanced Circuits

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuit Builder

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuits

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview


Lesson Info
Launch Gizmo

2.d.3: : Conductors and insulators

Screenshot of Circuit Builder

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electromagnetic Induction

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview


Lesson Info
Launch Gizmo

2.e: : Cite evidence and explain the application of electric currents and magnetic fields as they relate to their use in everyday living (e.g., the application of fields in motors and generators and the concept of electric current using Ohm?s Law

Screenshot of Advanced Circuits

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuits

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview


Lesson Info
Launch Gizmo

3: : Demonstrate an understanding of general properties and characteristics of waves.


3.a: : Differentiate among transverse, longitudinal, and surface waves as they propagate through a medium (e.g., string, air, water, steel beam).

Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo

3.b: : Compare properties of waves (e.g., superposition, interference, refraction, reflection, diffraction, Doppler Effect) and explain the connection among the quantities (e.g., wavelength, frequency, period, amplitude, and velocity).

Screenshot of Basic Prism

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Doppler Shift

Doppler Shift

Observe sound waves emitted from a moving vehicle. Measure the frequency of sound waves in front of and behind the vehicle as it moves, illustrating the Doppler effect. The frequency of sound waves, speed of the source, and the speed of sound can all be manipulated. Motion of the vehicle can be linear, oscillating, or circular. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Doppler Shift Advanced

Doppler Shift Advanced

Derive an equation to calculate the frequency of an oncoming sound source and a receding sound source. Also, calculate the Doppler shift that results from a moving observer and a stationary sound source. The source velocity, sound velocity, observer velocity, and sound frequency can all be manipulated. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Refraction

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sound Beats and Sine Waves

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview


Lesson Info
Launch Gizmo

3.c: : Classify the electromagnetic spectrum?s regions according to frequency and/or wavelength and draw conclusions about their impact on life.

3.c.1: : The emission of light by electrons when moving from higher to lower levels

Screenshot of Star Spectra

Star Spectra

Analyze the spectra of a variety of stars. Determine the elements that are represented in each spectrum, and use this information to infer the temperature and classification of the star. Look for unusual features such as redshifted stars, nebulae, and stars with large planets. 5 Minute Preview


Lesson Info
Launch Gizmo

3.c.2: : Energy (photons as quanta of light)

Screenshot of Photoelectric Effect

Photoelectric Effect

Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and amount of light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies. 5 Minute Preview


Lesson Info
Launch Gizmo

4: : Develop an understanding of the atom.


4.a: : Cite evidence to summarize the atomic theory.

4.a.1: : Models for atoms

Screenshot of Bohr Model of Hydrogen

Bohr Model of Hydrogen

Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Bohr Model: Introduction

Bohr Model: Introduction

Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

4.a.2: : Hund?s rule and Aufbau process to specify the electron configuration of elements

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo

4.c: : Research the history of the periodic table of the elements and summarize the contributions which led to the atomic theory.

4.c.2: : Technology (e.g., x-rays, cathode-ray tubes, spectroscopes)

Screenshot of Electromagnetic Induction

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview


Lesson Info
Launch Gizmo

4.d: : Utilize the periodic table to predict and explain patterns and draw conclusions about the structure, properties, and organization of matter.

4.d.1: : Atomic composition and valence electron configuration (e.g., atomic number, mass number of protons, neutrons, electrons, isotopes, and ions)

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

4.d.2: : Periodic trends using the periodic table (e.g., valence, reactivity, atomic radius)

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo

4.d.3: : Average atomic mass from isotopic abundance

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

4.d.5: : Periodic properties of elements (e.g., metal/nonmetal/metalloid behavior, electrical/heat conductivity, electronegativity, electron affinity, ionization energy, atomic/covalent/ionic radius) and how they relate to position in the periodic table

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo

5: : Investigate and apply principles of physical and chemical changes in matter. a. Write chemical formulas for compounds comprising monatomic and polyatomic ions.


5.b: : Balance chemical equations.

Screenshot of Balancing Chemical Equations

Balancing Chemical Equations

Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

5.c: : Classify types of chemical reactions (e,g., composition, decomposition, single displacement, double displacement, combustion, acid/base reactions).

Screenshot of Balancing Chemical Equations

Balancing Chemical Equations

Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Dehydration Synthesis

Dehydration Synthesis

Build a glucose molecule, atom-by-atom, to learn about chemical bonds and the structure of glucose. Explore the processes of dehydration synthesis and hydrolysis in carbohydrate molecules. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Equilibrium and Concentration

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap