- Home
- Find Gizmos
- Browse by Standard (USA)
- West Virginia Standards
- Mathematics: Algebra 2 with Probability
South Carolina - Mathematics: Algebra 2 with Probability
2025 College- and Career-Ready Standards | Adopted: 2023
A2P.MPS: : Mathematical Process Standards
A2P.MPS.PS: : PROBLEM SOLVING
A2P.MPS.PS.1: : Make sense of problems and persevere in solving them strategically.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Cat and Mouse (Modeling with Linear Systems) - Metric
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
A2P.MPS.RC: : REPRESENTATION & COMMUNICATION
A2P.MPS.RC.1: : Explain ideas using precise and contextually appropriate mathematical language, tools, and models.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Conditional Statements
Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Linear Programming
Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
A2P.MPS.C: : CONNECTIONS
A2P.MPS.C.1: : Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Cat and Mouse (Modeling with Linear Systems) - Metric
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
Linear Programming
Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview
A2P.MPS.AJ: : ANALYZE & JUSTIFY
A2P.MPS.AJ.1: : Use critical thinking skills to reason both abstractly and quantitatively.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Linear Programming
Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Permutations and Combinations
Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview
A2P.MPS.SP: : STRUCTURE & PATTERNS
A2P.MPS.SP.1: : Identify and apply regularity in repeated reasoning to make generalizations.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
Finding Patterns
Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview
Pattern Finder
Observe frogs jumping around on colored lily pads. Find, test, and reason about patterns you see in their jumping. 5 Minute Preview
A2P.DPSR: : Data, Probability, and Statistical Reasoning
A2P.DPSR.1: : Understand independence and conditional probability and use them to interpret data.
A2P.DPSR.1.2: : Explain whether two events, A and B, are independent if and only if the probability of A and B occurring together is the product of their probabilities and use this characterization to determine if they are independent.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
A2P.DPSR.1.3: : Determine whether the conditional probability of A given B as P(A and B)/P(B) and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B in mathematical and real-world situations.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
A2P.DPSR.1.4: : Recognize and explain the concepts of conditional probability and independence.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
A2P.DPSR.2: : Use the rules of probability to compute probabilities of compound events in a uniform probability model.
A2P.DPSR.2.1: : Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A and interpret the answer in terms of the model.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
A2P.DPSR.2.3: : Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A) x P(B|A) = P(B) x P(A|B) and interpret the answer in terms of the model.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
A2P.DPSR.2.4: : Use permutations and combinations to determine the number of possible outcomes in a sample space.
Permutations and Combinations
Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview
A2P.MGSR: : Measurement, Geometry, and Spatial Reasoning
A2P.MGSR.1: : Explore and analyze sine and cosine functions using the unit circle, right triangle definitions, and models of periodic phenomena.
A2P.MGSR.1.1: : Build the unit circle for sine and cosine functions using right triangle definitions.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
A2P.MGSR.1.2: : Use models of periodic phenomena to evaluate and analyze the graph of sine and cosine functions.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
A2P.NR: : Numerical Reasoning
A2P.NR.1: : Recognize that the complex number system extends the real number system to allow for solution to all polynomial equations.
A2P.NR.1.1: : Understand that there is an imaginary unit i such that i² = -1 and explain the structure of a complex number as a + bi, where a and b are real.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
A2P.NR.1.2: : Add, subtract, and multiply complex numbers.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
A2P.NR.2: : Represent and manipulate data using matrices.
A2P.NR.2.1: : Perform operations with matrices including addition, subtraction, and scalar multiplication.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
A2P.PAFR: : Patterns, Algebra, and Functional Reasoning
A2P.PAFR.1: : Explore and analyze quadratic and polynomial functions and inequalities and use them to model real-world situations.
A2P.PAFR.1.1: : Graph, identify roots, and analyze quadratic functions in mathematical and real-world situations.
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
A2P.PAFR.1.2: : Solve quadratic inequalities that model mathematical and real-world situations.
Quadratic Inequalities
Find the solution set to a quadratic inequality using its graph. Vary the terms of the inequality and the inequality symbol. Examine how the boundary curve and shaded region change in response. 5 Minute Preview
A2P.PAFR.1.3: : Graph and analyze polynomial functions in mathematical and real-world situations.
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
A2P.PAFR.1.5: : Recognize perfect squares and perfect cubes and use them to describe the structure of polynomials.
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
A2P.PAFR.2: : Explore and analyze rational and radical functions and use them to model real-world phenomena.
A2P.PAFR.2.1: : Graph rational and radical functions and describe their key features. Limit to square roots and cube roots only.
Direct and Inverse Variation
Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
A2P.PAFR.2.3: : Create and solve rational and radical equations in one variable, including those that model real-life situations, and verify solutions to identify extraneous solutions if they appear.
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
A2P.PAFR.3: : Explore and analyze exponential functions and use them to model real-world phenomena.
A2P.PAFR.3.1: : Create, solve, and graph exponential functions, including those that model real-life situations.
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
A2P.PAFR.4: : Reason with parent functions to find families of functions that all have similar distinguishing attributes common to the family and use common characteristics to aid in rewriting and identifying functions.
A2P.PAFR.4.1: : Identify the effect on the graph of replacing f(x) by kf(x), f(x) + k, f(kx) for any real number k including multiple transformations; write an equation of a transformed parent function given its graph. Extend to equations involving rational, polynomial, radical, exponential, and piecewise.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
A2P.PAFR.5: : Explore and analyze piecewise functions and linear absolute value inequalities and use them to model real-world phenomena.
A2P.PAFR.5.1: : Graph piecewise functions and describe their key features.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
A2P.PAFR.5.2: : Solve linear absolute value inequalities.
Absolute Value Equations and Inequalities
Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview
A2P.PAFR.6: : Represent and interpret functions symbolically and graphically.
A2P.PAFR.6.1: : Find the inverse of functions and verify graphically.
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
A2P.PAFR.6.3: : Use linear programming to solve systems of equations and inequalities by addressing the constraints that arise in real-world situations.
Linear Programming
Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview
Correlation last revised: 8/22/2024
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote