Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • West Virginia Standards
  • Mathematics: Algebra 2

West Virginia - Mathematics: Algebra 2

College- and Career-Readiness Standards | Adopted: 2015

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

PRR: : Polynomial, Rational, and Radical Relationships


1.1: : Perform arithmetic operations with complex numbers.

PRR.M.A2HS.1: : Know there is a complex number i such that i² = -1, and every complex number has the form a + bi with a and b real.

Screenshot of Points in the Complex Plane

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Roots of a Quadratic

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview


Lesson Info
Launch Gizmo

PRR.M.A2HS.2: : Use the relation i² = –1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Screenshot of Points in the Complex Plane

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2: : Use complex numbers in polynomial identities and equations.

PRR.M.A2HS.3: : Solve quadratic equations with real coefficients that have complex solutions.

Screenshot of Roots of a Quadratic

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview


Lesson Info
Launch Gizmo

PRR.M.A2HS.4: : Extend polynomial identities to the complex numbers.

Screenshot of Points in the Complex Plane

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview


Lesson Info
Launch Gizmo

1.3: : Interpret the structure of expressions.

PRR.M.A2HS.6: : Interpret expressions that represent a quantity in terms of its context.

PRR.M.A2HS.6.a: : Interpret parts of an expression, such as terms, factors, and coefficients.

Screenshot of Arithmetic Sequences

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Compound Interest

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview


Lesson Info
Launch Gizmo

PRR.M.A2HS.7: : Use the structure of an expression to identify ways to rewrite it.

Screenshot of Dividing Exponential Expressions

Dividing Exponential Expressions

Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Factoring Special Products

Factoring Special Products

Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Modeling the Factorization of <em>ax</em><sup>2</sup>+<em>bx</em>+<em>c</em>

Modeling the Factorization of ax2+bx+c

Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Modeling the Factorization of <em>x</em><sup>2</sup>+<em>bx</em>+<em>c</em>

Modeling the Factorization of x2+bx+c

Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview


Lesson Info
Launch Gizmo

1.5: : Perform arithmetic operations on polynomials.

PRR.M.A2HS.9: : Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Screenshot of Addition and Subtraction of Functions

Addition and Subtraction of Functions

Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Addition of Polynomials

Addition of Polynomials

Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview


Lesson Info
Launch Gizmo

1.6: : Understand the relationship between zeros and factors of polynomials.

PRR.M.A2HS.10: : Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).

Screenshot of Dividing Polynomials Using Synthetic Division

Dividing Polynomials Using Synthetic Division

Divide a polynomial by dragging the correct numbers into the correct positions for synthetic division. Compare the interpreted polynomial division to the synthetic division. 5 Minute Preview


Lesson Info
Launch Gizmo

PRR.M.A2HS.11: : Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Screenshot of Polynomials and Linear Factors

Polynomials and Linear Factors

Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview


Lesson Info
Launch Gizmo

1.7: : Use polynomial identities to solve problems.

PRR.M.A2HS.13: : Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.

Screenshot of Binomial Probabilities

Binomial Probabilities

Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview


Lesson Info
Launch Gizmo

1.10: : Represent and solve equations and inequalities graphically.

PRR.M.A2HS.17: : Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations.

Screenshot of Absolute Value Equations and Inequalities

Absolute Value Equations and Inequalities

Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Cat and Mouse (Modeling with Linear Systems)

Cat and Mouse (Modeling with Linear Systems)

Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Cat and Mouse (Modeling with Linear Systems) - Metric

Cat and Mouse (Modeling with Linear Systems) - Metric

Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Radical Functions

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Equations by Graphing Each Side

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Slope-Intercept Form)

Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an (x, y) point to be a solution of one equation, or of a system of two equations. 5 Minute Preview


Lesson Info
Launch Gizmo

1.11: : Analyze functions using different representations.

PRR.M.A2HS.18: : Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Screenshot of Graphs of Polynomial Functions

Graphs of Polynomial Functions

Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polynomials and Linear Factors

Polynomials and Linear Factors

Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview


Lesson Info
Launch Gizmo

TF: : Trigonometric Functions


2.1: : Extend the domain of trigonometric functions using the unit circle.

TF.M.A2HS.19: : Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

Screenshot of Cosine Function

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Radians

Radians

As factory belt operator, your job is to move boxes just the right distance on the belt, so they can be stamped for delivery. Your only controls are the radius and rotation of the belt’s wheel. How do you set these to get the distance right? See how this relates to arc length, and discover how radians help make this task easier. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sine Function

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Tangent Function

Tangent Function

Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo

TF.M.A2HS.20: : Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

Screenshot of Cosine Function

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sine Function

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Tangent Function

Tangent Function

Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo

2.2: : Model periodic phenomena with trigonometric functions.

TF.M.A2HS.21: : Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

Screenshot of Sine Function

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sound Beats and Sine Waves

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Translating and Scaling Sine and Cosine Functions

Translating and Scaling Sine and Cosine Functions

Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo

2.3: : Prove and apply trigonometric identities.

TF.M.A2HS.22: : Prove the Pythagorean identity sin²(theta) + cos²(theta) = 1 and use it to find sin (theta), cos (theta), or tan (theta), given sin (theta), cos (theta), or tan (theta), and the quadrant of the angle.

Screenshot of Cosine Function

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sine Function

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview


Lesson Info
Launch Gizmo

MF: : Modeling with Functions


3.1: : Create equations that describe numbers or relationships.

MF.M.A2HS.23: : Create equations and inequalities in one variable and use them to solve problems.

Screenshot of Exploring Linear Inequalities in One Variable

Exploring Linear Inequalities in One Variable

Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Modeling One-Step Equations

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Modeling and Solving Two-Step Equations

Modeling and Solving Two-Step Equations

Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Roots of a Quadratic

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Equations by Graphing Each Side

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Equations on the Number Line

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Linear Inequalities in One Variable

Solving Linear Inequalities in One Variable

Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Two-Step Equations

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview


Lesson Info
Launch Gizmo

MF.M.A2HS.24: : Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Screenshot of Exponential Functions

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Introduction to Exponential Functions

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Quadratics in Polynomial Form

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Quadratics in Vertex Form

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Slope-Intercept Form of a Line

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo

MF.M.A2HS.25: : Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. (e.g., Represent inequalities describing nutritional and cost constraints on combinations of different foods.)

Screenshot of Linear Programming

Linear Programming

Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo

MF.M.A2HS.26: : Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (e.g., Rearrange Ohm’s law V = IR to highlight resistance R.) While functions will often be linear, exponential, or quadratic the types of problems should draw from more complex situations than those addressed in Algebra I.

Screenshot of Roots of a Quadratic

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Formulas for any Variable

Solving Formulas for any Variable

Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview


Lesson Info
Launch Gizmo

3.2: : Interpret functions that arise in applications in terms of a context.

MF.M.A2HS.27: : For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

Screenshot of Exponential Growth and Decay

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Quadratics in Polynomial Form

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Slope-Intercept Form of a Line

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo

MF.M.A2HS.28: : Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. (e.g., If the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.)

Screenshot of Exponential Growth and Decay

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview


Lesson Info
Launch Gizmo

MF.M.A2HS.29: : Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Screenshot of Distance-Time Graphs

Distance-Time Graphs

Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Distance-Time Graphs - Metric

Distance-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Distance-Time and Velocity-Time Graphs

Distance-Time and Velocity-Time Graphs

Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Distance-Time and Velocity-Time Graphs - Metric

Distance-Time and Velocity-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview


Lesson Info
Launch Gizmo

3.3: : Analyze functions using different representations.

MF.M.A2HS.30: : Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

MF.M.A2HS.30.a: : Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

Screenshot of Absolute Value with Linear Functions

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Radical Functions

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Translating and Scaling Functions

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview


Lesson Info
Launch Gizmo

MF.M.A2HS.30.b: : Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Screenshot of Exponential Functions

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Introduction to Exponential Functions

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Logarithmic Functions

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Logarithmic Functions: Translating and Scaling

Logarithmic Functions: Translating and Scaling

Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Translating and Scaling Functions

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Translating and Scaling Sine and Cosine Functions

Translating and Scaling Sine and Cosine Functions

Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview


Lesson Info
Launch Gizmo

MF.M.A2HS.31: : Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

Screenshot of Exponential Growth and Decay

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview


Lesson Info
Launch Gizmo

3.4: : Build a function that models a relationship between two quantities.

MF.M.A2HS.33: : Write a function that describes a relationship between two quantities. Combine standard function types using arithmetic operations. (e.g., Build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.)

Screenshot of Addition and Subtraction of Functions

Addition and Subtraction of Functions

Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview


Lesson Info
Launch Gizmo

3.5: : Build new functions from existing functions.

MF.M.A2HS.34: : Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Screenshot of Exponential Functions

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Graphs of Polynomial Functions

Graphs of Polynomial Functions

Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Introduction to Exponential Functions

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Logarithmic Functions: Translating and Scaling

Logarithmic Functions: Translating and Scaling

Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Quadratics in Polynomial Form

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Quadratics in Vertex Form

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Translating and Scaling Functions

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Translating and Scaling Sine and Cosine Functions

Translating and Scaling Sine and Cosine Functions

Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Zap It! Game

Zap It! Game

Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview


Lesson Info
Launch Gizmo

MF.M.A2HS.35: : Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. (e.g., f(x) = 2x³ or f(x) = (x + 1)/(x - 1) for x not equal to 1.)

Screenshot of Logarithmic Functions

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Radical Functions

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview


Lesson Info
Launch Gizmo

3.6: : Construct and compare linear, quadratic, and exponential models and solve problems.

MF.M.A2HS.36: : For exponential models, express as a logarithm the solution to ab^(ct) = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.

Screenshot of Logarithmic Functions

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview


Lesson Info
Launch Gizmo

ICD: : Inferences and Conclusions from Data


4.1: : Summarize, represent, and interpret data on a single count or measurement variable.

ICD.M.A2HS.37: : Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Real-Time Histogram

Real-Time Histogram

Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sight vs. Sound Reactions

Sight vs. Sound Reactions

Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview


Lesson Info
Launch Gizmo

4.2: : Understand and evaluate random processes underlying statistical experiments.

ICD.M.A2HS.38: : Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

ICD.M.A2HS.39: : Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. (e.g., A model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?)

Screenshot of Geometric Probability

Geometric Probability

Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Probability Simulations

Probability Simulations

Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Theoretical and Experimental Probability

Theoretical and Experimental Probability

Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview


Lesson Info
Launch Gizmo

4.3: : Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

ICD.M.A2HS.40: : Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo

ICD.M.A2HS.41: : Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo

ICD.M.A2HS.42: : Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

4.4: : Use probability to evaluate outcomes of decisions.

ICD.M.A2HS.44: : Use probabilities to make fair decisions (e.g., drawing by lots or using a random number generator).

Screenshot of Lucky Duck (Expected Value)

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview


Lesson Info
Launch Gizmo

ICD.M.A2HS.45: : Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, and/or pulling a hockey goalie at the end of a game).

Screenshot of Lucky Duck (Expected Value)

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 1/10/2023

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap