- Home
- Find Gizmos
- Browse by Standard (USA)
- Maine Standards
- Mathematics: Precalculus
North Carolina - Mathematics: Precalculus
Standard Course of Study | Adopted: 2019
PC.N: : Number and Quantity
PC.N.1: : Apply properties of complex numbers and the complex number system.
PC.N.1.1: : Execute the sum and difference algorithms to combine complex numbers.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
PC.N.1.2: : Execute the multiplication algorithm with complex numbers.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
PC.N.2: : Apply properties and operations with matrices.
PC.N.2.1: : Execute the sum and difference algorithms to combine matrices of appropriate dimensions.
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
PC.N.2.4: : Execute properties of matrices to multiply a matrix by a scalar.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
PC.N.3: : Understand properties and operations with vectors.
PC.N.3.1: : Represent a vector indicating magnitude and direction.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
PC.N.3.2: : Execute sum and difference algorithms to combine vectors.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
PC.A: : Algebra
PC.A.1: : Apply properties of solving inequalities that include rational and polynomial expressions in one variable.
PC.A.1.1: : Implement algebraic (sign analysis) methods to solve rational and polynomial inequalities.
Quadratic Inequalities
Find the solution set to a quadratic inequality using its graph. Vary the terms of the inequality and the inequality symbol. Examine how the boundary curve and shaded region change in response. 5 Minute Preview
PC.A.1.2: : Implement graphical methods to solve rational and polynomial inequalities.
Quadratic Inequalities
Find the solution set to a quadratic inequality using its graph. Vary the terms of the inequality and the inequality symbol. Examine how the boundary curve and shaded region change in response. 5 Minute Preview
PC.A.2: : Apply properties of solving equations involving exponential, logarithmic, and trigonometric functions.
PC.A.2.1: : Use properties of logarithms to rewrite expressions.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
PC.A.2.2: : Implement properties of exponentials and logarithms to solve equations.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
PC.F: : Functions
PC.F.2: : Apply properties of a unit circle with center (0,0) to determine the values of sine, cosine, tangent, cotangent, secant, and cosecant.
PC.F.2.1: : Use a unit circle to find values of sine, cosine, and tangent for angles in terms of reference angles.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
PC.F.2.2: : Explain the relationship between the symmetry of a unit circle and the periodicity of trigonometric functions.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
PC.F.3: : Apply properties of trigonometry to solve problems involving all types of triangles.
PC.F.3.3: : Implement the Pythagorean identity to find sin(theta), cos(theta), or tan(theta) given sin(theta), cos(theta), or tan(theta) and the quadrant of the angle.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
PC.F.4: : Understand the relationship of algebraic and graphical representations of exponential, logarithmic, rational, power functions, and conic sections to their key features.
PC.F.4.1: : Interpret algebraic and graphical representations to determine key features of exponential functions. Key features include: domain, range, intercepts, intervals where the function is increasing, decreasing, positive or negative, concavity, end behavior, limits, and asymptotes.
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
PC.F.4.2: : Integrate information to build exponential functions to model phenomena involving growth or decay.
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
PC.F.4.3: : Interpret algebraic and graphical representations to determine key features of logarithmic functions. Key features include: domain, range, intercepts, intervals where the function is increasing, decreasing, positive or negative, concavity, end behavior, continuity, limits, and asymptotes.
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
PC.F.4.4: : Implement graphical and algebraic methods to solve exponential and logarithmic equations in context with support from technology.
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
PC.F.4.5: : Interpret algebraic and graphical representations to determine key features of rational functions. Key features include: domain, range, intercepts, intervals where the function is increasing, decreasing, positive or negative, concavity, end behavior, continuity, limits, and asymptotes.
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
PC.F.4.7: : Construct graphs of transformations of power, exponential, and logarithmic functions showing key features.
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
PC.F.4.8: : Identify the conic section (ellipse, hyperbola, parabola) from its algebraic representation in standard form.
Ellipses
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview
Hyperbolas
Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
PC.F.4.9: : Interpret algebraic and graphical representations to determine key features of conic sections (ellipse: center, length of the major and minor axes; hyperbola: vertices, transverse axis; parabola: vertex, axis of symmetry).
Ellipses
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview
Hyperbolas
Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
PC.F.6: : Apply mathematical reasoning to build recursive functions to model and solve problems.
PC.F.6.1: : Use algebraic representations to build recursive functions.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
PC.F.6.2: : Construct a recursive function for a sequence represented numerically.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
Correlation last revised: 4/12/2022
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote