Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Indiana Standards
  • Mathematics: Probability and Statistics

Indiana - Mathematics: Probability and Statistics

Academic Standards | Adopted: 2014

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

PS.DA: : Data Analysis


PS.DA.1: : Create, compare, and evaluate different graphic displays of the same data, using histograms, frequency polygons, cumulative frequency distribution functions, pie charts, scatterplots, stem-and-leaf plots, and box-and-whisker plots. Draw these with and without technology.

Screenshot of Box-and-Whisker Plots

Box-and-Whisker Plots

Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Correlation

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Graphing Skills

Graphing Skills

Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Histograms

Histograms

Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Least-Squares Best Fit Lines

Least-Squares Best Fit Lines

Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Real-Time Histogram

Real-Time Histogram

Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sight vs. Sound Reactions

Sight vs. Sound Reactions

Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Using Trend Lines

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Stem-and-Leaf Plots

Stem-and-Leaf Plots

Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Trends in Scatter Plots

Trends in Scatter Plots

Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.2: : Compute and use mean, median, mode, weighted mean, geometric mean, harmonic mean, range, quartiles, variance, and standard deviation. Use tables and technology to estimate areas under the normal curve. Fit a data set to a normal distribution and estimate population percentages. Recognize that there are data sets not normally distributed for which such procedures are inappropriate.

Screenshot of Box-and-Whisker Plots

Box-and-Whisker Plots

Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Describing Data Using Statistics

Describing Data Using Statistics

Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Geometric Sequences

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mean, Median, and Mode

Mean, Median, and Mode

Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Reaction Time 1 (Graphs and Statistics)

Reaction Time 1 (Graphs and Statistics)

Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Reaction Time 2 (Graphs and Statistics)

Reaction Time 2 (Graphs and Statistics)

Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Real-Time Histogram

Real-Time Histogram

Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sight vs. Sound Reactions

Sight vs. Sound Reactions

Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Stem-and-Leaf Plots

Stem-and-Leaf Plots

Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.3: : Understand the central limit theorem and use it to solve problems.

Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.4: : Understand hypothesis tests of means and differences between means and use them to reach conclusions. Compute and use confidence intervals to make estimates. Construct and interpret margin of error and confidence intervals for population proportions.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.7: : Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.8: : Understand the meaning of measurement data and categorical data, of univariate and bivariate data, and of the term variable.

Screenshot of Correlation

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Histograms

Histograms

Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Least-Squares Best Fit Lines

Least-Squares Best Fit Lines

Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Lucky Duck (Expected Value)

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Using Trend Lines

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Trends in Scatter Plots

Trends in Scatter Plots

Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.9: : Understand statistics and use sampling distributions as a process for making inferences about population parameters based on a random sample from that population.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.10: : Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.11: : Find linear models by using median fit and least squares regression methods to make predictions. Decide which among several linear models gives a better fit. Interpret the slope and intercept in terms of the original context. Informally assess the fit of a function by plotting and analyzing residuals.

Screenshot of Correlation

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Least-Squares Best Fit Lines

Least-Squares Best Fit Lines

Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solving Using Trend Lines

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Trends in Scatter Plots

Trends in Scatter Plots

Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.DA.12: : Evaluate reports based on data by considering the source of the data, the design of the study, the way the data are analyzed and displayed, and whether the report confuses correlation with causation. Distinguish between correlation and causation.

Screenshot of Correlation

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.ED: : Experimental Design


PS.ED.1: : Formulate questions that can be addressed with data. Collect, organize, and display relevant data to answer the questions formulated.

Screenshot of Box-and-Whisker Plots

Box-and-Whisker Plots

Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Correlation

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Describing Data Using Statistics

Describing Data Using Statistics

Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Histograms

Histograms

Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Stem-and-Leaf Plots

Stem-and-Leaf Plots

Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.ED.3: : Construct simulated sampling distributions of sample proportions and use sampling distributions to identify which proportions are likely to be found in a sample of a given size.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.ED.4: : Use simulations to explore the variability of sample statistics from a known population and to construct sampling distributions.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.ED.6: : Model and solve real-world problems involving patterns using recursion and iteration, growth and decay, and compound interest.

Screenshot of Arithmetic Sequences

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Compound Interest

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Exponential Growth and Decay

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Geometric Sequences

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Half-life

Half-life

Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.ED.7: : Understand and apply basic ideas related to the design, analysis, and interpretation of surveys and sampling, such as background information, random sampling, causality and bias.

Screenshot of Correlation

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.ED.9: : Understand the differences among various kinds of studies and which types of inferences can legitimately be drawn from each.

Screenshot of Polling: City

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polling: Neighborhood

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Populations and Samples

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P: : Probability


PS.P.1: : Understand and use the addition rule to calculate probabilities for mutually exclusive and nonmutually exclusive events.

Screenshot of Binomial Probabilities

Binomial Probabilities

Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P.2: : Understand and use the multiplication rule to calculate probabilities for independent and dependent events. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Screenshot of Geometric Probability

Geometric Probability

Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Independent and Dependent Events

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P.3: : Understand the multiplication counting principle, permutations, and combinations; use them to solve real-world problems. Use simulations with and without technology to solve counting and probability problems.

Screenshot of Binomial Probabilities

Binomial Probabilities

Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Geometric Probability

Geometric Probability

Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Independent and Dependent Events

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Lucky Duck (Expected Value)

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Permutations and Combinations

Permutations and Combinations

Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Probability Simulations

Probability Simulations

Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Spin the Big Wheel! (Probability)

Spin the Big Wheel! (Probability)

Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Theoretical and Experimental Probability

Theoretical and Experimental Probability

Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P.4: : Calculate the probabilities of complementary events.

Screenshot of Geometric Probability

Geometric Probability

Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Probability Simulations

Probability Simulations

Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Theoretical and Experimental Probability

Theoretical and Experimental Probability

Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P.5: : Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.

Screenshot of Lucky Duck (Expected Value)

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P.6: : Analyze decisions and strategies using probability concepts. Analyze probabilities to interpret odds and risk of events.

Screenshot of Independent and Dependent Events

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Lucky Duck (Expected Value)

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P.7: : Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.

Screenshot of Lucky Duck (Expected Value)

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P.8: : Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; Compute and interpret the expected value of random variables.

Screenshot of Lucky Duck (Expected Value)

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview


Lesson Info
Launch Gizmo

PS.P.9: : Derive the binomial theorem by combinatorics. Use combinatorial reasoning to solve problems.

Screenshot of Binomial Probabilities

Binomial Probabilities

Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Permutations and Combinations

Permutations and Combinations

Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 11/9/2021

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap