Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Arkansas Standards
  • Science: Physics

Arkansas - Science: Physics

Curriculum Framework | Adopted: 2016

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

1: : Motion


P-PS1-2AR: : Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects.

Screenshot of Coulomb Force (Static)

Coulomb Force (Static)

Drag two charged particles around and observe the Coulomb force between them as their positions change. The charge of each object can be adjusted, and the force is displayed both numerically and with vectors as the distance between the objects is altered. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Gravitational Force

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pith Ball Lab

Pith Ball Lab

Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

P-PS2-1: : Analyze data to support the claim that Newton’s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Screenshot of Atwood Machine

Atwood Machine

Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fan Cart Physics

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview


Lesson Info
Launch Gizmo

P-ESS1-4: : Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

Screenshot of Orbital Motion - Kepler's Laws

Orbital Motion - Kepler's Laws

Learn Kepler's three laws of planetary motion by examining the orbit of a planet around a star. The initial position, velocity, and mass of the planet can be varied as well as the mass of the star. The foci and centers of orbits can be displayed and compared to the location of the star. The area swept out by the planet in a given time period can be measured, and data on orbital radii and periods can be plotted in several ways. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solar System Explorer

Solar System Explorer

Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified. 5 Minute Preview


Lesson Info
Launch Gizmo

P1-ETS1-2: : Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

2: : Work and Energy


P-PS2-1AR: : Develop computational and graphical models to calculate and illustrate the work done and changes in energy in a system.

Screenshot of 2D Collisions

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview


Lesson Info
Launch Gizmo

P-PS2-4AR: : Analyze data to demonstrate the relationship between rotational and linear motion, energy, and momentum.

Screenshot of 2D Collisions

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Air Track

Air Track

Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview


Lesson Info
Launch Gizmo

P-PS2-6AR: : Use mathematical representations to support the claim that the total impulse on a system of objects is equal to the change in momentum of the system.

Screenshot of Air Track

Air Track

Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview


Lesson Info
Launch Gizmo

P2-ETS1-3: : Evaluate a solution to a complex real-world problem based on prioritized criteria and trade- offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

3: : Heat and Thermodynamics


P-PS3-1: : Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

Screenshot of Energy Conversion in a System

Energy Conversion in a System

A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Energy of a Pendulum

Energy of a Pendulum

Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inclined Plane - Rolling Objects

Inclined Plane - Rolling Objects

Observe and compare objects of different shapes as they roll or slide down an inclined plane. Compare the percentages of translational and rotational kinetic energy for each object, and see how this affects how quickly each object moves. The slope of each ramp can be adjusted, and a variety of materials can be used for the objects and ramps. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inclined Plane - Sliding Objects

Inclined Plane - Sliding Objects

Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview


Lesson Info
Launch Gizmo

P-PS3-3: : Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

Screenshot of Feel the Heat

Feel the Heat

Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Trebuchet

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview


Lesson Info
Launch Gizmo

P-PS3-4: : Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).

Screenshot of Calorimetry Lab

Calorimetry Lab

Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Conduction and Convection

Conduction and Convection

Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo

P3-ETS1-1: : Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

P3-ETS1-2: : Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

P3-ETS1-3: : Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

P3-ETS1-4: : Use a computer simulation to model the impact of proposed solutions to a complex real- world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo

4: : Waves, Sound, and Simple Harmonic Motion


P-PS4-1AR: : Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, speed, and energy of waves traveling in various media.

Screenshot of Earthquakes 1 - Recording Station

Earthquakes 1 - Recording Station

Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Refraction

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo

P4-ETS1-4: : Use a computer simulation to model the impact of proposed solutions to a complex real- world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo

5: : Electricity


P-PS2-4: : Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects.

Screenshot of Coulomb Force (Static)

Coulomb Force (Static)

Drag two charged particles around and observe the Coulomb force between them as their positions change. The charge of each object can be adjusted, and the force is displayed both numerically and with vectors as the distance between the objects is altered. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Gravitational Force

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pith Ball Lab

Pith Ball Lab

Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

P-PS2-5: : Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

Screenshot of Electromagnetic Induction

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Magnetic Induction

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

P-PS3-2: : Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).

Screenshot of Boyle's Law and Charles's Law

Boyle's Law and Charles's Law

Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles's Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source. Gay-Lussac's law relating pressure to temperature can also be explored by keeping the volume constant. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Energy Conversion in a System

Energy Conversion in a System

A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Energy of a Pendulum

Energy of a Pendulum

Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inclined Plane - Sliding Objects

Inclined Plane - Sliding Objects

Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Potential Energy on Shelves

Potential Energy on Shelves

Compare the potential energy of several objects when you place them on shelves of different heights. Learn that two objects at different heights can have the same potential energy, while two objects at the same height can have different potential energies. 5 Minute Preview


Lesson Info
Launch Gizmo

P5-ETS1-1: : Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap