A farmer in Africa is having problems with elephants eating her corn and cotton crops. As a wildlife biologist, students learn about animal group behavior and relationships of elephants and humans with bees. Students collect data from the farm and elephants to hypothesize and test solutions that will protect the crops without hurting the elephants.
Animal Group Behavior
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles.
Area of Triangles
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form.
Biconditional Statements
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes.
Box-and-Whisker Plots
In 1915, Alfred Wegener proposed that all of Earth's continents were once joined in an ancient supercontinent he called Pangaea. Wegener's idea of moving continents led to the modern theory of plate tectonics. Create your own version of Pangaea by fitting Earth's landmasses together like puzzle pieces. Use evidence from fossils, rocks, and glaciers to refine your map.
Building Pangaea
You are the captain of an interplanetary cargo ship, delivering important supplies to the outer planets. The cargo can be stored in barrels, crates, and holds. (There are 10 barrels in a crate, and 10 crates in a hold.) Model multi-digit subtraction by unloading cargo on each planet.
Cargo Captain (Multi-digit Subtraction)
Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded.
Cell Division
Use groups of critters on leaves to model multiplication as repeated addition. Change the expression to change the number of groups or the number of critters per group. Display the critters either on leaves or as a rectangular array.
Critter Count (Modeling Multiplication)
Observe the spread of a disease through a group of students. The disease is spread by either person-to-person contact or food. Adjust the number of people in the space, the probability of transmission, and whether students are wearing masks. Determine the factors that control how quickly the disease spreads for each disease.
Disease Spread
A drug prescription must be carefully planned to maximize benefit while avoiding an overdose. In this Gizmo, you can give a patient one or more pills and monitor the levels of medication in the body through time. Based on the reaction of the patient, determine the ideal levels of medication. Create a dosage schedule so these levels are maintained through time. Four types of pills, each with a different release pattern and target organ, are available for use.
Drug Dosage
Design a house to withstand an earthquake and protect the people living inside. Select a location in San Francisco, then choose the design and materials for a foundation, frame, walls, and roof. Decide which extras to add to your home design. Test each house in an earthquake and assess the damages. Try to arrive at a house design that results in the least damage.
Earthquake-Proof Homes
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property.
Ellipses
Once light enters the eye, it must be focused on the retina. Manipulate the pupil diameter to regulate the amount of light that enters then eye, then change the lens shape to focus light. Determine the changes in lens shape needed to maintain focus as the object distance changes. This is a followup to the Eyes and Vision 1 - Seeing Colors lesson.
Eyes and Vision 2 - Focusing Light
Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants.
Fast Plants® 1 - Growth and Genetics
In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits.
Fast Plants® 2 - Mystery Parent
Extend understanding of fractions by making modern paintings in the style of Piet Mondrian. Create and analyze paintings with different-sized sections. Compare the sizes of unit fractions. Find creative ways to color one-half of a painting. This can be a nice introduction to adding fractions with unlike denominators.
Fraction Artist 2 (Area Models of Fractions)
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs.
Growing Plants
Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives.
Half-life
Create aliens with different traits and breed them to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released.
Inheritance
Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response.
Linear Programming
As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring.
Meowsis
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results.
Mouse Genetics (Two Traits)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set.
Movie Reviewer (Mean and Median)
Explore number systems and convert numbers from one base to another using counter beads in place-value columns.
Number Systems
Develop an understanding of ocean tides by comparing the depth of water near a dock to the positions of the Moon, Sun, and Earth. Determine the influence of the Moon and Sun on tides, and compare spring tides to neap tides.
Ocean Tides
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted.
Phase Changes
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population.
Populations and Samples
Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry.
Quilting Bee (Symmetry)
Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image.
Ray Tracing (Lenses)
Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image.
Ray Tracing (Mirrors)
Plan a cross-country road trip through various U.S. state capitals. First choose a vehicle to drive, and then fill up the tank with gas and go! Find the range and gas mileage of each vehicle, and discover the shortest path between two cities.
Road Trip (Problem Solving)
Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes.
Slope
Explore the meaning of square roots using an area model. Use the side length of a square to find the square root of a decimal number or a whole number.
Square Roots
Title
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common.
Translating and Scaling Functions
Arrange blocks in a three-dimensional space so that the top view, front view, and side view match the target top view, front view, and side view.
3D and Orthographic Views
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response.
Arithmetic and Geometric Sequences
Launch clowns from a circus cannon and try to hit the target. Drag digit cards on the control panel to set the launch distance and choose an appropriate unit of distance. After practicing your clown-launching skills on a number line, move on to the Big Top, Football Field, School Buses, the Golden Gate Bridge, and more!
Cannonball Clowns (Number Line Estimation)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines.
Cat and Mouse (Modeling with Linear Systems) - Metric
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided.
Cell Structure
Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results.
Chicken Genetics
Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing.
Conduction and Convection
Use dichotomous keys to identify and classify five types of organisms: California albatrosses, Canadian Rockies buttercups, Texas venomous snakes, Virginia evergreens, and Florida cartilagenous fishes. After you have classified every organism, try making your own dichotomous key!
Dichotomous Keys
Observe the spread of a disease through a group of students. The disease is spread by either person-to-person contact or food. Adjust the number of people in the space, the probability of transmission, and whether students are wearing masks. Determine the factors that control how quickly the disease spreads for each disease.
Disease Spread
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment.
STEM Case
STEM Case Ecosystems
Calculate the difference between the times given by two analog clocks. Rotate the hands of the clocks to change the time and see how the calculation changes.
Elapsed Time
Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given.
Element Builder
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go.
Elevator Operator (Line Graphs)
Where does energy come from? How does energy get from one place to another? Find out how electrical current is generated and how living things get energy to move and grow. Trace the path of energy and see how energy is converted from one form to another.
Energy Conversions
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage.
Evolution: Mutation and Selection
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph.
Exponential Growth and Decay
Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants.
Fast Plants® 1 - Growth and Genetics
In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits.
Fast Plants® 2 - Mystery Parent
Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid.
Finding Patterns
Use a scalpel, forceps, and pins to dissect realistic male and female frogs. Organs can be removed and placed into organ system diagrams. Once the dissections are complete, the frog organ systems can be compared. Zooming, rotating, and panning tools are available to examine the frog from any angle.
Frog Dissection
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph.
Function Machines 2 (Functions, Tables, and Graphs)
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball.
Gravity Pitch
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied.
Inclined Plane - Sliding Objects
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit.
Least-Squares Best Fit Lines
Every substance has unique transition points, or temperatures at which one phase (solid, liquid, or gas) transitions to another. Use a realistic melting point apparatus to measure the melting points, boiling points, and/or sublimation points of different substances and observe what these phase changes look like at the microscopic level. Based on the transition points, make inferences about the relative strengths of the forces holding these substances together.
Melting Points
Multiply two decimals using a dynamic area model. On a grid, shade the region with width equal to one of the decimals and height equal to the other decimal and find the area of the region.
Multiplying with Decimals
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes.
Probability Simulations
The Secret Service has arrested suspects accused of counterfeiting coins from the year 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and evidence. Students learn about the properties of matter to recreate the methods used to make the coins as evidence for the trial.
STEM Case
STEM Case Properties of Matter
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem.
Pythagorean Theorem with a Geoboard
Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well.
Refraction
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings.
Rock Art (Transformations)
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.
Rock Cycle
Observe the motions of the Earth, Moon and Sun in three dimensions to explain Sunrise and Sunset, and to see how we define a day, a month, and a year. Compare times of Sunrise and Sunset for different dates and locations. Relate shadows to the position of the Sun in the sky, and relate shadows to compass directions.
Seasons: Earth, Moon, and Sun
Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain.
Senses
Create a set of stuffed animals: monkeys, giraffes, and rabbits. Toys can be painted red, green, or blue. Describe the makeup of the set (animals or colors) with fractions. Arrange the toys into groups to simplify the fractions.
Toy Factory (Set Models of Fractions)
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible.
Zap It! Game