- Home
- Find Gizmos
- Browse by Standard (USA)
- Minnesota Standards
- Science: Environmental Science
Alabama - Science: Environmental Science
Course of Study | Adopted: 2023
1: : Ecosystems: Interactions, Energy, and Dynamics
1.1: : Matter and Energy Flow
1.1.1: : Students will… Use mathematical representations to illustrate how the first two laws of thermodynamics demonstrate energy transfers throughout ecosystems, including food chains, food webs, and trophic levels, at various levels of biological organization.
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
1.1.2: : Students will… Obtain, evaluate, and communicate information to model the cycling of matter through the biosphere, atmosphere, hydrosphere, and geosphere, including the flow of carbon, water, nitrogen, phosphorus, and sulfur.
Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
2: : Unity and Diversity
2.1: : Biodiversity
2.1.3: : Students will… Construct an explanation of how biotic and abiotic factors affect biodiversity and populations in ecosystems.
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Rabbit Population by Season
Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview
Rainfall and Bird Beaks
Study the thickness of birds' beaks over a five-year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview
Rainfall and Bird Beaks - Metric
Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview
2.1.3.a: : Support a claim that biodiversity is a natural resource which fosters ecosystem resilience, including the role of keystone, invasive, native, endemic, and indicator species.
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
4: : Earth and Human Activity
4.2: : Human Impact
4.2.8: : Students will… Construct or revise a claim based on evidence of the effects of human activities on Earth’s systems, natural resources, and ecosystem services.
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
GMOs and the Environment
In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
Photosynthesis - High School
As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview
4.2.8.a: : Evaluate published information from computational models which illustrate the effects of an increase in atmospheric carbon dioxide on photosynthesis and the effect of ocean acidification on marine populations.
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
4.2.8.b: : Use engineering practices to evaluate and refine a current solution designed to protect natural resources from anthropogenic sources of atmospheric, terrestrial, or aquatic pollution.
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
Photosynthesis - High School
As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview
4.2.9: : Students will… Obtain, evaluate, and communicate information based on evidence to explain how key natural resources, natural hazards, and climate variability influence human activity and welfare.
4.2.9.a: : Communicate scientific information about how environmental change may disproportionately impact people in certain socioeconomic groups or geographic locations.
Hydrologic Cycle - High School
Paanee, a city in Northeast India, has been experiencing higher rates of flooding than normal. This surge in flooding has been caused by an increase in the hydrologic cycle’s activity. Students take on the role of a hydrologist to investigate why the hydrologic cycle’s rate has increased and what can be done to manage flooding and reduce flooding. Video Preview
4.2.10: : Students will… Use mathematics and graphic models to communicate how human activity may affect genetic variation in organism populations, including threatened and endangered species.
GMOs and the Environment
In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview
Genetic Engineering
Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview
4.3: : Human Population and Global Change
4.3.12: : Students will… Obtain, evaluate, and communicate information to describe the effects of human population growth on global ecosystems.
4.3.12.a: : Evaluate and communicate information describing the impact of measures used to increase the food supply for the growing human population, including the use of GMOs, monocultures, integrated pest management (IPM), and precision agriculture.
GMOs and the Environment
In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview
Genetic Engineering
Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview
Correlation last revised: 5/6/2024
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote