- Home
- Find Gizmos
- Browse by Standard (USA)
- South Carolina Standards
- Science: Chemistry
Louisiana - Science: Chemistry
Student Standards | Adopted: 2017
HS-PS1: : Matter and Its Interactions
HS-PS1-1: : Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level and the composition of the nucleus of atoms.
Electron Configuration
Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview
Element Builder
Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview
Periodic Trends
Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview
HS-PS1-2: : Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
Covalent Bonds
Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview
Ionic Bonds
Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview
Periodic Trends
Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview
Electrons and Chemical Reactions - High School
The Secret Service has arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and examine the evidence. Students learn about electrons and chemical reactions to recreate the methods used to make the coins and prepare evidence for the court case. Video Preview
HS-PS1-3: : Plan and conduct an investigation to gather evidence to compare the structure of substances at the macroscale to infer the strength of electrical forces between particles.
Melting Points
Every substance has unique transition points, or temperatures at which one phase (solid, liquid, or gas) transitions to another. Use a realistic melting point apparatus to measure the melting points, boiling points, and/or sublimation points of different substances and observe what these phase changes look like at the microscopic level. Based on the transition points, make inferences about the relative strengths of the forces holding these substances together. 5 Minute Preview
Polarity and Intermolecular Forces
Combine various metal and nonmetal atoms to observe how the electronegativity difference determines the polarity of chemical bonds. Place molecules into an electric field to experimentally determine if they are polar or nonpolar. Create different mixtures of polar and nonpolar molecules to explore the intermolecular forces that arise between them. 5 Minute Preview
Sticky Molecules
Learn about molecular polarity and how polarity gives rise to intermolecular forces. Measure four macroscopic properties of liquids (cohesion, adhesion, surface tension, and capillary rise). Compare these properties for different liquids and relate them to whether the substances are polar or nonpolar. 5 Minute Preview
HS-PS1-4: : Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
Feel the Heat
Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview
Reaction Energy
Exothermic chemical reactions release energy, while endothermic reactions absorb energy. But what causes some reactions to be exothermic, and others to be endothermic? In this simulation, compare the energy absorbed in breaking bonds to the energy released in forming bonds to determine if a reaction will be exothermic or endothermic. 5 Minute Preview
HS-PS1-5: : Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
Collision Theory
Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview
HS-PS1-6: : Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.
Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview
Equilibrium and Pressure
Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview
Ocean Carbon Equilibrium - High School
Mussel farmers in the Arctic Ocean have reported problems with their mussels. They have noticed that the mussel shells have eroded and become brittle. Students take on the role of a marine chemist to analyze the changes to ocean carbon chemistry and equilibrium to determine the cause of the mussel shell erosion. Video Preview
HS-PS1-7: : Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.
Balancing Chemical Equations
Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview
Moles
Understand the definition of a mole and determine the Avogadro constant by adding atoms or formula units to a balance until the mass in grams is equal to the atomic or formula mass. Manipulate a conceptual model to understand how the number of particles, the number of moles, and the mass are related. Then use dimensional analysis to convert between particles, moles, and mass. 5 Minute Preview
Stoichiometry
Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied. 5 Minute Preview
Water Crisis - High School
There has been an outbreak of legionnaires’ disease in a small town. This disease is caused by legionella bacteria that proliferate in contaminated water supplies. Students take on the role of an environmental chemist to investigate the source of legionella and use stoichiometry to decontaminate the water supply and remediate the disease outbreak. Video Preview
HS-PS1-8: : Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.
Average Atomic Mass
The atomic mass for each element listed in the periodic table is actually the weighted average mass of all of the different isotopes of the element. In the Average Atomic Mass Gizmo, use a mass spectrometer to separate an element into its isotopes. Then, calculate the average atomic mass by considering the mass and abundance of each isotope. 5 Minute Preview
Isotopes
Explore what isotopes are by adding protons and neutrons to the nucleus of an atom. Plot both stable and radioactive isotopes on a graph of neutrons vs. protons, and explore how the neutron:proton ratio of stable isotopes changes from lighter to heavier elements. 5 Minute Preview
Nuclear Decay
Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview
Nuclear Reactions
Explore examples of nuclear fusion and fission reactions. Follow the steps of the proton-proton chain, CNO cycle, and fission of uranium-235. Write balanced nuclear equations for each step, and compare the energy produced in each process. 5 Minute Preview
HS-PS2: : Motion and Stability: Forces and Interactions
HS-PS2-6: : Communicate scientific and technical information about why the atomic-level, subatomic-level, and/or molecular level structure is important in the functioning of designed materials.
Feel the Heat
Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview
HS-PS3: : Energy
HS-PS3-1: : Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
HS-PS3-3: : Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
Feel the Heat
Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview
HS-PS3-4: : Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).
Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview
Conduction and Convection
Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview
Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview
Correlation last revised: 4/29/2024
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote