- Home
- Find Gizmos
- Browse by Standard (USA)
- West Virginia Standards
- Mathematics: Precalculus
Tennessee - Mathematics: Precalculus
Academic Standards | Adopted: 2021
1: : Number and Quantity
P.N.NE: : Number Expressions
P.N.NE.A: : Represent, interpret, compare, and simplify number expressions.
P.N.NE.A.1: : Use the laws of exponents and logarithms to expand or collect terms in expressions; simplify expressions or modify them in order to analyze them or compare them.
Dividing Exponential Expressions
Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Exponents and Power Rules
Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview
Multiplying Exponential Expressions
Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
P.N.NE.A.2: : Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
P.N.NE.A.4: : Simplify complex radical and rational expressions; discuss and display understanding that rational numbers are dense in the real numbers and the integers are not.
Operations with Radical Expressions
Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Simplifying Radical Expressions
Simplify a radical expression. Use step-by-step feedback to diagnose any incorrect steps. 5 Minute Preview
P.N.CN: : The Complex Number System
P.N.CN.A: : Perform complex number arithmetic and understand the representation on the complex plane.
P.N.CN.A.1: : Know there is a complex number i such that i² = –1, and every complex number has the form a + bi with a and b real.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
P.N.CN.A.2: : Perform arithmetic operations with complex numbers expressing answers in the form a + bi.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
P.N.CN.A.3: : Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
P.N.CN.A.4: : Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
P.N.CN.A.5: : Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation (for example, (–1 + 3i) 3 = 8 because (–1 + 3i) has modulus 2 and argument 120°).
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
P.N.CN.A.6: : Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
P.N.CN.B: : Use complex numbers in polynomial identities and equations.
P.N.CN.B.7: : Extend polynomial identities to the complex numbers (for example, rewrite x² + 4 as (x + 2i)(x – 2i).
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
P.N.CN.B.8: : Solve quadratic equations with real coefficients that have complex solutions.
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
P.N.VM: : Vector and Matrix Quantities
P.N.VM.A: : Represent and model with vector quantities.
P.N.VM.A.1: : Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, ||v||, v).
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
P.N.VM.A.2: : Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
P.N.VM.A.3: : Solve problems involving velocity and other quantities that can be represented by vectors.
2D Collisions
Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Golf Range
Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
P.N.VM.B: : Understand the graphic representation of vectors and vector arithmetic.
P.N.VM.B.6: : Calculate and interpret the dot product of two vectors.
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
P.N.VM.C: : Perform operations on matrices and use matrices in applications.
P.N.VM.C.8: : Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
P.N.VM.C.10: : Work with 2 × 2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
2: : Algebra
P.A.S: : Sequences and Series
P.A.S.A: : Understand and use sequences and series.
P.A.S.A.1: : Demonstrate an understanding of sequences by representing them recursively and explicitly.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
P.A.S.A.5: : Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined, for example, by Pascal’s Triangle.
Binomial Probabilities
Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview
P.A.REI: : Reasoning with Equations and Inequalities
P.A.REI.A: : Solve systems of equations and nonlinear inequalities.
P.A.REI.A.1: : Represent a system of linear equations as a single matrix equation in a vector variable.
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
P.A.REI.A.2: : Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 × 3 or greater).
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
P.A.REI.A.4: : Solve nonlinear inequalities (quadratic, trigonometric, conic, exponential, logarithmic, and rational) by graphing (solutions in interval notation if one-variable), by hand and with appropriate technology.
Quadratic Inequalities
Find the solution set to a quadratic inequality using its graph. Vary the terms of the inequality and the inequality symbol. Examine how the boundary curve and shaded region change in response. 5 Minute Preview
P.A.C: : Conic Sections
P.A.C.A: : Understand the properties of conic sections and model real-world phenomena.
P.A.C.A.1: : Display all of the conic sections as portions of a cone.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Ellipses
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview
Hyperbolas
Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
P.A.C.A.2: : Know and write the equation of a circle of given center and radius using the Pythagorean Theorem.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
P.A.C.A.3: : Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.
Ellipses
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview
Hyperbolas
Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview
P.A.C.A.4: : From an equation in standard form, graph the appropriate conic section: ellipses, hyperbolas, circles, and parabolas. Demonstrate an understanding of the relationship between their standard algebraic form and the graphical characteristics.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Ellipses
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview
Hyperbolas
Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
P.A.C.A.5: : Transform equations of conic sections to convert between general and standard form.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
3: : Functions
P.F.BF: : Building Functions
P.F.BF.A: : Build new functions from existing functions.
P.F.BF.A.1: : Understand how the algebraic properties of an equation transform the geometric properties of its graph (for example, given a function, describe the transformation of the graph resulting from the manipulation of the algebraic properties of the equation such as translations, stretches, reflections, and changes in periodicity and amplitude).
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
P.F.BF.A.2: : Develop an understanding of functions as elements that can be operated upon to get new functions: addition, subtraction, multiplication, division, and composition of functions.
Addition and Subtraction of Functions
Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview
P.F.BF.A.5: : Find inverse functions (including exponential, logarithmic, and trigonometric).
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
P.F.BF.A.6: : Explain why the graph of a function and its inverse are reflections of one another over the line y = x.
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
P.F.IF: : Interpreting Functions
P.F.IF.A: : Analyze functions using different representations.
P.F.IF.A.1: : Determine whether a function is even, odd, or neither.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
P.F.IF.A.2: : Analyze qualities of exponential, polynomial, logarithmic, trigonometric, and rational functions and solve real-world problems that can be modeled with these functions (by hand and with appropriate technology).
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
P.F.IF.A.3: : Identify the real zeros of a function and explain the relationship between the real zeros and the x-intercepts of the graph of a function (exponential, polynomial, logarithmic, trigonometric, and rational).
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
P.F.IF.A.4: : Identify characteristics of graphs based on a set of conditions or on a general equation such as y = ax² + c.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
P.F.IF.A.5: : Visually locate critical points on the graphs of functions and determine if each critical point is a minimum, a maximum, or point of inflection. Describe intervals where the function is increasing or decreasing and where different types of concavity occur.
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
Correlation last revised: 4/17/2023
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote