- Home
- Find Gizmos
- Browse by Standard (USA)
- South Carolina Standards
- Science: 4th Grade
Tennessee - Science: 4th Grade
Academic Standards | Adopted: 2016
4.PS3: : Energy
4.PS3.1: : Use evidence to explain the cause and effect relationship between the speed of an object and the energy of an object.
Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
4.PS3.2: : Observe and explain the relationship between potential energy and kinetic energy.
Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
4.PS4: : Waves and their Applications in Technologies for Information Transfer
4.PS4.1: : Use a model of a simple wave to explain regular patterns of amplitude, wavelength, and direction.
Waves
Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview
4.PS4.2: : Describe how the colors of available light sources and the bending of light waves determine what we see.
Additive Colors
Control the intensity of red, green, and blue spotlights. Additive colors can be observed where the spotlights overlap. The RGB value of any point can be measured. Just about any color can be created by mixing varying amounts of red, green, and blue light. 5 Minute Preview
Eyes and Vision 1 - Seeing Color
Observe how different colors of light are reflected or absorbed by colored objects. Determine that white light is a combination of different colors of light, and that one or more component colors may be reflected when white light is shone on an object. Understand that we see an object when light reflected from the object enters our eye. 5 Minute Preview
Eyes and Vision 2 - Focusing Light
Once light enters the eye, it must be focused on the retina. Manipulate the pupil diameter to regulate the amount of light that enters then eye, then change the lens shape to focus light. Determine the changes in lens shape needed to maintain focus as the object distance changes. This is a followup to the Eyes and Vision 1 - Seeing Colors lesson. 5 Minute Preview
Heat Absorption
Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview
Subtractive Colors
Move spots of yellow, cyan, and magenta pigment on a white surface. As the colors overlap, other colors can be seen due to color subtraction. The color of most things you see--such as cars, leaves, paintings, houses, and clothes--are due to color subtraction. The intensity of the cyan, magenta, and yellow can be adjusted, and the RGB value at any location can be measured. 5 Minute Preview
4.LS2: : Ecosystems: Interactions, Energy, and Dynamics
4.LS2.1: : Support an argument with evidence that plants get the materials they need for growth and reproduction chiefly through a process in which they use carbon dioxide from the air, water, and energy from the sun to produce sugars, plant materials, and waste (oxygen); and that this process is called photosynthesis.
Plants and Snails
Study the production and use of gases by plants and animals. Measure the oxygen and carbon dioxide levels in a test tube containing snails and elodea (a type of plant) in both light and dark conditions. Learn about the interdependence of plants and animals. 5 Minute Preview
4.LS2.2: : Develop models of terrestrial and aquatic food chains to describe the movement of energy among producers, herbivores, carnivores, omnivores, and decomposers.
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview
Ecosystems - Elementary School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
4.LS2.3: : Using information about the roles of organisms (producers, consumers, decomposers), evaluate how those roles in food chains are interconnected in a food web, and communicate how the organisms are continuously able to meet their needs in a stable food web.
Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview
Ecosystems - Elementary School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
4.LS2.4: : Develop and use models to determine the effects of introducing a species to, or removing a species from, an ecosystem and how either one can damage the balance of an ecosystem.
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview
Ecosystems - Elementary School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
4.LS2.5: : Analyze and interpret data about changes (land characteristics, water distribution, temperature, food, and other organisms) in the environment and describe what mechanisms organisms can use to affect their ability to survive and reproduce.
Plants and Snails
Study the production and use of gases by plants and animals. Measure the oxygen and carbon dioxide levels in a test tube containing snails and elodea (a type of plant) in both light and dark conditions. Learn about the interdependence of plants and animals. 5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
4.ESS1: : Earth’s Place in the Universe
4.ESS1.1: : Generate and support a claim with evidence that over long periods of time, erosion (weathering and transportation) and deposition have changed landscapes and created new landforms.
Erosion Rates
Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview
River Erosion
Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview
Weathering
Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview
4.ESS2: : Earth’s Systems
4.ESS2.1: : Collect and analyze data from observations to provide evidence that rocks, soils, and sediments are broken into smaller pieces through mechanical weathering (frost wedging, abrasion, tree root wedging) and are transported by water, ice, wind, gravity, and vegetation.
Weathering
Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview
4.ETS1: : Engineering Design
4.ETS1.1: : Categorize the effectiveness of design solutions by comparing them to specified criteria for constraints.
Earthquake-Proof Homes
Design a house to withstand an earthquake and protect the people living inside. Select a location in San Francisco, then choose the design and materials for a foundation, frame, walls, and roof. Decide which extras to add to your home design. Test each house in an earthquake and assess the damages. Try to arrive at a house design that results in the least damage. 5 Minute Preview
Flood and Storm-Proof Homes
Build a home to survive a flood or a hurricane and protect the people inside. Choose materials and a design for the foundation, frame, walls, and roof of the house. Add "extras" such as sand bags, storm shutters, and roof clips. Test your house in a flood or storm and see how well your design worked. 5 Minute Preview
4.ETS2: : Links Among Engineering, Technology, Science, and Society
4.ETS2.2: : Determine the effectiveness of multiple solutions to a design problem given the criteria and the constraints.
Earthquake-Proof Homes
Design a house to withstand an earthquake and protect the people living inside. Select a location in San Francisco, then choose the design and materials for a foundation, frame, walls, and roof. Decide which extras to add to your home design. Test each house in an earthquake and assess the damages. Try to arrive at a house design that results in the least damage. 5 Minute Preview
Flood and Storm-Proof Homes
Build a home to survive a flood or a hurricane and protect the people inside. Choose materials and a design for the foundation, frame, walls, and roof of the house. Add "extras" such as sand bags, storm shutters, and roof clips. Test your house in a flood or storm and see how well your design worked. 5 Minute Preview
Programmable Rover
In this introduction to coding, program a rover to explore the surface of Mars. Start by using tiles to create simple programs involving moving forward or backward, turns, jumps, loops, and picking up rock samples. Then use text instructions to optimize your code. Use your skills to program the rover to complete six challenging missions on Mars. 5 Minute Preview
Water Contamination - Elementary School
There has been an outbreak of legionnaires’ disease in a small town. This disease is caused by legionella bacteria that proliferate in contaminated water supplies. Students take on the role of a civil engineer to investigate how the water treatment plant has failed to get rid of all the contaminants in the water and design a new method. Video Preview
Correlation last revised: 10/18/2022
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote