- Home
- Find Gizmos
- Browse by Standard (USA)
- Alabama Standards
- Mathematics: STEM Readiness

# West Virginia - Mathematics: STEM Readiness

## College- and Career-Readiness Standards | Adopted: 2015

### AAC: : Arithmetic and Algebra of Complex Numbers

1.1: : Perform arithmetic operations with complex numbers.

AAC.M.SRM.1: : Know there is a complex number i such that i² = -1, and every complex number has the form a + bi with a and b real.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

AAC.M.SRM.2: : Use the relation i² = -1 and the commutative, associative and distributive properties to add, subtract and multiply complex numbers.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

AAC.M.SRM.3: : Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

1.2: : Represent complex numbers and their operations on the complex plane.

AAC.M.SRM.4: : Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers) and explain why the rectangular and polar forms of a given complex number represent the same number.

Points in the Complex Plane

AAC.M.SRM.5: : Represent addition, subtraction, multiplication and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. (e.g., (-1 + (square root of 3)i)³ = 8 because (-1 + (square root of 3)i) has modulus 2 and argument 120°.)

Points in the Complex Plane

AAC.M.SRM.6: : Calculate the distance between numbers in the complex plane as the modulus of the difference and the midpoint of a segment as the average of the numbers at its endpoints.

Points in the Complex Plane

1.3: : Use complex numbers in polynomial identities and equations.

AAC.M.SRM.7: : Solve quadratic equations with real coefficients that have complex solutions.

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

AAC.M.SRM.8: : Extend polynomial identities to the complex numbers. For example, rewrite x² + 4 as (x + 2i)(x – 2i).

Points in the Complex Plane

### PRR: : Polynomials, Rational, and Radical Relationships

2.1: : Use polynomial identities to solve problems.

PRR.M.SRM.10: : Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.

Binomial Probabilities

Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview

### PD: : Probability for Decisions

3.1: : Use probability to evaluate outcomes of decisions.

PD.M.SRM.12: : Use probabilities to make fair decisions (e.g., drawing by lot or using a random number generator).

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview

PD.M.SRM.13: : Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, and/or pulling a hockey goalie at the end of a game).

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview

### FM: : Functions and Modeling

5.1: : Analyze functions using different representations.

FM.M.SRM.17: : Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Graphs of Polynomial Functions

Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview

Point-Slope Form of a Line

Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Polynomials and Linear Factors

Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

Roots of a Quadratic

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Standard Form of a Line

Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

FM.M.SRM.18: : Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available and showing end behavior.

General Form of a Rational Function

Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview

Rational Functions

Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview

FM.M.SRM.19: : Graph exponential and logarithmic functions, showing intercepts and end behavior and trigonometric functions, showing period, midline, and amplitude.

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

Logarithmic Functions: Translating and Scaling

Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

Translating and Scaling Sine and Cosine Functions

Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview

5.2: : Building a function that models a relationship between two quantities.

FM.M.SRM.20: : Write a function that describes a relationship between two quantities.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Arithmetic and Geometric Sequences

Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

5.3: : Build new functions from existing functions.

FM.M.SRM.22: : Find inverse functions.

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

FM.M.SRM.24: : Read values of an inverse function from a graph or a table, given that the function has an inverse.

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

FM.M.SRM.26: : Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

Logarithmic Functions

*y* = *x* to compare the associated exponential function.
5 Minute Preview

5.4: : Extend the domain of trigonometric functions using the unit circle.

FM.M.SRM.27: : Use special triangles to determine geometrically the values of sine, cosine, tangent for pi/3, pi/4 and pi/6, and use the unit circle to express the values of sine, cosine, and tangent for pi – x, pi + x, and 2pi – x in terms of their values for x, where x is any real number.

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview

Tangent Function

Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview

FM.M.SRM.28: : Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview

Tangent Function

Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview

5.6: : Prove and apply trigonometric identities.

FM.M.SRM.31: : Prove the addition and subtraction formulas for sine, cosine and tangent and use them to solve problems.

Sum and Difference Identities for Sine and Cosine

Choose the correct steps to evaluate a trigonometric expression using sum and difference identities. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview

Correlation last revised: 1/10/2023

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available January 1 and July 1.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote