- Home
- Find Gizmos
- Browse by Standard (CAN)
- Maine Standards
- Mathematics: 12th Grade Advanced Functions
Ontario - Mathematics: 12th Grade Advanced Functions
Ontario Curriculum | Adopted: 2010
A: : Exponential and Logarithmic Functions
A.1: : demonstrate an understanding of the relationship between exponential expressions and logarithmic expressions, evaluate logarithms, and apply the laws of logarithms to simplify numeric expressions;
A.1.1: : recognize the logarithm of a number to a given base as the exponent to which the base must be raised to get the number, recognize the operation of finding the logarithm to be the inverse operation (i.e., the undoing or reversing) of exponentiation, and evaluate simple logarithmic expressions
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
A.1.2: : determine, with technology, the approximate logarithm of a number to any base, including base 10 (e.g., by reasoning that log base 3 of 29 is between 3 and 4 and using systematic trial to determine that log base 3 of 29 is approximately 3.07)
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
A.1.3: : make connections between related logarithmic and exponential equations (e.g., log base 5 of 125 = 3 can also be expressed as 5³ = 125), and solve simple exponential equations by rewriting them in logarithmic form (e.g., solving 3 to the xth power = 10 by rewriting the equation as log base 3 of 10 = x)
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
A.2: : identify and describe some key features of the graphs of logarithmic functions, make connections among the numeric, graphical, and algebraic representations of logarithmic functions, and solve related problems graphically;
A.2.1: : determine, through investigation with technology (e.g., graphing calculator, spreadsheet) and without technology, key features (i.e., vertical and horizontal asymptotes, domain and range, intercepts, increasing/decreasing behaviour) of the graphs of logarithmic functions of the form f(x) = log base b of x, and make connections between the algebraic and graphical representations of these logarithmic functions
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
A.2.2: : recognize the relationship between an exponential function and the corresponding logarithmic function to be that of a function and its inverse, deduce that the graph of a logarithmic function is the reflection of the graph of the corresponding exponential function in the line y = x, and verify the deduction using technology
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
A.2.3: : determine, through investigation using technology, the roles of the parameters d and c in functions of the form y = log base 10 of (x – d) + c and the roles of the parameters a and k in functions of the form y = alog base 10 of (kx), and describe these roles in terms of transformations on the graph of f(x) = log base 10 of x (i.e., vertical and horizontal translations; reflections in the axes; vertical and horizontal stretches and compressions to and from the x- and y-axes)
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
A.2.4: : pose problems based on real-world applications of exponential and logarithmic functions (e.g., exponential growth and decay, the Richter scale, the pH scale, the decibel scale), and solve these and other such problems by using a given graph or a graph generated with technology from a table of values or from its equation
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
A.3: : solve exponential and simple logarithmic equations in one variable algebraically, including those in problems arising from real-world applications.
A.3.4: : solve problems involving exponential and logarithmic equations algebraically, including problems arising from real-world applications
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
B: : Trigonometric Functions
B.1: : demonstrate an understanding of the meaning and application of radian measure;
B.1.1: : recognize the radian as an alternative unit to the degree for angle measurement, define the radian measure of an angle as the length of the arc that subtends this angle at the centre of a unit circle, and develop and apply the relationship between radian and degree measure
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
B.1.2: : represent radian measure in terms of pi (e.g., pi/3 radians, 2pi radians) and as a rational number (e.g., 1.05 radians, 6.28 radians)
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
B.1.3: : determine, with technology, the primary trigonometric ratios (i.e., sine, cosine, tangent) and the reciprocal trigonometric ratios (i.e., cosecant, secant, cotangent) of angles expressed in radian measure
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
B.1.4: : determine, without technology, the exact values of the primary trigonometric ratios and the reciprocal trigonometric ratios for the special angles 0, pi/6, pi/4, pi/3, pi/2, and their multiples less than or equal to 2pi
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
B.2: : make connections between trigonometric ratios and the graphical and algebraic representations of the corresponding trigonometric functions and between trigonometric functions and their reciprocals, and use these connections to solve problems;
B.2.1: : sketch the graphs of f(x) = sin x and f(x) = cos x for angle measures expressed in radians, and determine and describe some key properties (e.g., period of 2pi, amplitude of 1) in terms of radians
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
B.2.2: : make connections between the tangent ratio and the tangent function by using technology to graph the relationship between angles in radians and their tangent ratios and defining this relationship as the function f(x) = tan x, and describe key properties of the tangent function
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
B.2.4: : determine the amplitude, period, and phase shift of sinusoidal functions whose equations are given in the form f(x) = a sin (k(x – d)) + c or f(x) = a cos(k(x – d)) + c, with angles expressed in radians
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
B.2.5: : sketch graphs of y = a sin (k(x – d)) + c and y = a cos(k(x – d)) + c by applying transformations to the graphs of f(x) = sin x and f(x) = cos x with angles expressed in radians, and state the period, amplitude, and phase shift of the transformed functions
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
B.2.6: : represent a sinusoidal function with an equation, given its graph or its properties, with angles expressed in radians
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
B.2.7: : pose problems based on applications involving a trigonometric function with domain expressed in radians (e.g., seasonal changes in temperature, heights of tides, hours of daylight, displacements for oscillating springs), and solve these and other such problems by using a given graph or a graph generated with or without technology from a table of values or from its equation
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
B.3: : solve problems involving trigonometric equations and prove trigonometric identities.
B.3.2: : explore the algebraic development of the compound angle formulas (e.g., verify the formulas in numerical examples, using technology; follow a demonstration of the algebraic development [student reproduction of the development of the general case is not required]), and use the formulas to determine exact values of trigonometric ratios [e.g., determining the exact value of sin (pi/12) by first rewriting it in terms of special angles as sin (pi/4 - pi/6)]
Sum and Difference Identities for Sine and Cosine
Choose the correct steps to evaluate a trigonometric expression using sum and difference identities. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
B.3.3: : recognize that trigonometric identities are equations that are true for every value in the domain (i.e., a counter-example can be used to show that an equation is not an identity), prove trigonometric identities through the application of reasoning skills, using a variety of relationships (e.g., tan x = sin x / cos x; sin²x + cos²x = 1; the reciprocal identities; the compound angle formulas), and verify identities using technology
Simplifying Trigonometric Expressions
Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
Sum and Difference Identities for Sine and Cosine
Choose the correct steps to evaluate a trigonometric expression using sum and difference identities. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
C: : Polynomial and Rational Functions
C.1: : identify and describe some key features of polynomial functions, and make connections between the numeric, graphical, and algebraic representations of polynomial functions;
C.1.1: : recognize a polynomial expression (i.e., a series of terms where each term is the product of a constant and a power of x with a nonnegative integral exponent, such as x³ – 5x² + 2x – 1); recognize the equation of a polynomial function, give reasons why it is a function, and identify linear and quadratic functions as examples of polynomial functions
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Simplifying Algebraic Expressions I
Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
C.1.2: : compare, through investigation using graphing technology, the numeric, graphical, and algebraic representations of polynomial (i.e., linear, quadratic, cubic, quartic) functions (e.g., compare finite differences in tables of values; investigate the effect of the degree of a polynomial function on the shape of its graph and the maximum number of x-intercepts; investigate the effect of varying the sign of the leading coefficient on the end behaviour of the function for very large positive or negative x-values)
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
C.1.3: : describe key features of the graphs of polynomial functions (e.g., the domain and range, the shape of the graphs, the end behaviour of the functions for very large positive or negative x-values)
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
C.1.5: : make connections, through investigation using graphing technology (e.g., dynamic geometry software), between a polynomial function given in factored form [e.g., f(x) = 2(x - 3)(x + 2)(x - 1)] and the x-intercepts of its graph, and sketch the graph of a polynomial function given in factored form using its key features (e.g., by determining intercepts and end behaviour; by locating positive and negative regions using test values between and on either side of the x-intercepts)
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
C.1.6: : determine, through investigation using technology, the roles of the parameters a, k, d, and c in functions of the form y = af (k(x - d)) + c, and describe these roles in terms of transformations on the graphs of f(x) = x³ and f(x) = x to the 4th power (i.e., vertical and horizontal translations; reflections in the axes; vertical and horizontal stretches and compressions to and from the x- and y-axes)
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
C.1.9: : determine, through investigation, and compare the properties of even and odd polynomial functions [e.g., symmetry about the y-axis or the origin; the power of each term; the number of x-intercepts; f(x) = f(– x) or f(– x) = – f(x)], and determine whether a given polynomial function is even, odd, or neither
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
C.2: : identify and describe some key features of the graphs of rational functions, and represent rational functions graphically;
C.2.1: : determine, through investigation with and without technology, key features (i.e., vertical and horizontal asymptotes, domain and range, intercepts, positive/negative intervals, increasing/decreasing intervals) of the graphs of rational functions that are the reciprocals of linear and quadratic functions, and make connections between the algebraic and graphical representations of these rational functions [e.g., make connections between f(x) = 1/(x² - 4) and its graph by using graphing technology and by reasoning that there are vertical asymptotes at x = 2 and x = –2 and a horizontal asymptote at y = 0 and that the function maintains the same sign as f(x) = x² – 4]
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
Using Algebraic Expressions
Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview
C.2.2: : determine, through investigation with and without technology, key features (i.e., vertical and horizontal asymptotes, domain and range, intercepts, positive/negative intervals, increasing/decreasing intervals) of the graphs of rational functions that have linear expressions in the numerator and denominator [e.g., f(x) = 2x/(x - 3), h(x)= (x - 2)/(3x + 4)], and make connections between the algebraic and graphical representations of these rational functions
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
C.2.3: : sketch the graph of a simple rational function using its key features, given the algebraic representation of the function
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
C.3: : solve problems involving polynomial and simple rational equations graphically and algebraically;
C.3.1: : make connections, through investigation using technology (e.g., computer algebra systems), between the polynomial function f(x), the divisor x – a, the remainder from the division f(x)/(x - a), and f(a) to verify the remainder theorem and the factor theorem
Dividing Polynomials Using Synthetic Division
Divide a polynomial by dragging the correct numbers into the correct positions for synthetic division. Compare the interpreted polynomial division to the synthetic division. 5 Minute Preview
C.3.2: : factor polynomial expressions in one variable, of degree no higher than four, by selecting and applying strategies (i.e., common factoring, difference of squares, trinomial factoring, factoring by grouping, remainder theorem, factor theorem)
Dividing Polynomials Using Synthetic Division
Divide a polynomial by dragging the correct numbers into the correct positions for synthetic division. Compare the interpreted polynomial division to the synthetic division. 5 Minute Preview
Factoring Special Products
Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Modeling the Factorization of ax2+bx+c
Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
C.3.3: : determine, through investigation using technology (e.g., graphing calculator, computer algebra systems), the connection between the real roots of a polynomial equation and the x-intercepts of the graph of the corresponding polynomial function, and describe this connection [e.g., the real roots of the equation x to the 4th power – 13x² + 36 = 0 are the x-intercepts of the graph of f(x) = x to the 4th power – 13x² + 36]
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
C.3.4: : solve polynomial equations in one variable, of degree no higher than four (e.g., 2x³ – 3x² + 8x – 12 = 0), by selecting and applying strategies (i.e., common factoring, difference of squares, trinomial factoring, factoring by grouping, remainder theorem, factor theorem), and verify solutions using technology (e.g., using computer algebra systems to determine the roots; using graphing technology to determine the x-intercepts of the graph of the corresponding polynomial function)
Dividing Polynomials Using Synthetic Division
Divide a polynomial by dragging the correct numbers into the correct positions for synthetic division. Compare the interpreted polynomial division to the synthetic division. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
C.4: : demonstrate an understanding of solving polynomial and simple rational inequalities.
C.4.2: : determine solutions to polynomial inequalities in one variable [e.g., solve f(x) ≥ 0, where f(x) = x³ – x² + 3x – 9] and to simple rational inequalities in one variable by graphing the corresponding functions, using graphing technology, and identifying intervals for which x satisfies the inequalities
Quadratic Inequalities
Find the solution set to a quadratic inequality using its graph. Vary the terms of the inequality and the inequality symbol. Examine how the boundary curve and shaded region change in response. 5 Minute Preview
C.4.3: : solve linear inequalities and factorable polynomial inequalities in one variable (e.g., (x³ + x²) greater than 0) in a variety of ways (e.g., by determining intervals using x-intercepts and evaluating the corresponding function for a single x-value within each interval; by factoring the polynomial and identifying the conditions for which the product satisfies the inequality), and represent the solutions on a number line or algebraically (e.g., for the inequality (x to the 4th power – 5x² + 4) less than 0, the solution represented algebraically is –2 less than x less than –1 or 1 less than x less than 2)
Compound Inequalities
Explore the graphs of two inequalities and find their union or intersection. Determine the relationship between the endpoints of the inequalities and the endpoints of the compound inequality. 5 Minute Preview
Exploring Linear Inequalities in One Variable
Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview
Linear Inequalities in Two Variables
Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview
Solving Linear Inequalities in One Variable
Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview
Systems of Linear Inequalities (Slope-intercept form)
Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response. 5 Minute Preview
D: : Characteristics of Functions
D.2: : determine functions that result from the addition, subtraction, multiplication, and division of two functions and from the composition of two functions, describe some properties of the resulting functions, and solve related problems;
D.2.1: : determine, through investigation using graphing technology, key features (e.g., domain, range, maximum/minimum points, number of zeros) of the graphs of functions created by adding, subtracting, multiplying, or dividing functions [e.g., f(x) = 2 to the -x power sin 4x, g(x) = x² + 2 to the x power, h(x) = (sin x)/(cos x)], and describe factors that affect these properties
Addition and Subtraction of Functions
Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview
D.2.3: : determine, through investigation, and explain some properties (i.e., odd, even, or neither; increasing/decreasing behaviours) of functions formed by adding, subtracting, multiplying, and dividing general functions [e.g., f(x) + g(x), f(x)g(x)]
Addition and Subtraction of Functions
Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview
D.2.8: : make connections, through investigation using technology, between transformations (i.e., vertical and horizontal translations; reflections in the axes; vertical and horizontal stretches and compressions to and from the x- and y-axes) of simple functions f(x) [e.g., f(x) = x to the 3rd power + 20, f(x) = sin x, f(x) = log x] and the composition of these functions with a linear function of the form g(x) = A(x + B)
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
D.3: : compare the characteristics of functions, and solve problems by modelling and reasoning with functions, including problems with solutions that are not accessible by standard algebraic techniques.
D.3.1: : compare, through investigation using a variety of tools and strategies (e.g., graphing with technology; comparing algebraic representations; comparing finite differences in tables of values) the characteristics (e.g., key features of the graphs, forms of the equations) of various functions (i.e., polynomial, rational, trigonometric, exponential, logarithmic)
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
D.3.2: : solve graphically and numerically equations and inequalities whose solutions are not accessible by standard algebraic techniques
Absolute Value Equations and Inequalities
Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Compound Inequalities
Explore the graphs of two inequalities and find their union or intersection. Determine the relationship between the endpoints of the inequalities and the endpoints of the compound inequality. 5 Minute Preview
Exploring Linear Inequalities in One Variable
Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview
Linear Inequalities in Two Variables
Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Quadratic Inequalities
Find the solution set to a quadratic inequality using its graph. Vary the terms of the inequality and the inequality symbol. Examine how the boundary curve and shaded region change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Linear Inequalities in One Variable
Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview
Systems of Linear Inequalities (Slope-intercept form)
Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote