- Home
- Find Gizmos
- Browse by Standard (CAN)
- Alabama Standards
- Mathematics: 11th Grade (University/College Preparation)
Ontario - Mathematics: 11th Grade (University/College Preparation)
Ontario Curriculum | Adopted: 2010
A: : Quadratic Functions
A.1: : expand and simplify quadratic expressions, solve quadratic equations, and relate the roots of a quadratic equation to the corresponding graph;
A.1.1: : pose problems involving quadratic relations arising from real-world applications and represented by tables of values and graphs, and solve these and other such problems (e.g., “From the graph of the height of a ball versus time, can you tell me how high the ball was thrown and the time when it hit the ground?”)
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
A.1.3: : factor quadratic expressions in one variable, including those for which a is not equal to 1 (e.g., 3x² + 13x - 10), differences of squares (e.g., 4x² - 25), and perfect square trinomials (e.g., 9x² + 24x + 16), by selecting and applying an appropriate strategy
Factoring Special Products
Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Modeling the Factorization of ax2+bx+c
Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Modeling the Factorization of x2+bx+c
Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
A.1.4: : solve quadratic equations by selecting and applying a factoring strategy
Modeling the Factorization of x2+bx+c
Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
A.1.5: : determine, through investigation, and describe the connection between the factors used in solving a quadratic equation and the x-intercepts of the graph of the corresponding quadratic relation
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
A.1.6: : explore the algebraic development of the quadratic formula (e.g., given the algebraic development, connect the steps to a numeric example; follow a demonstration of the algebraic development, with technology, such as computer algebra systems, or without technology [student reproduction of the development of the general case is not required]), and apply the formula to solve quadratic equations, using technology
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
A.1.7: : relate the real roots of a quadratic equation to the x-intercepts of the corresponding graph, and connect the number of real roots to the value of the discriminant (e.g., there are no real roots and no x-intercepts if b² – 4ac < 0)
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
A.1.8: : determine the real roots of a variety of quadratic equations (e.g., 100x² = 115x + 35), and describe the advantages and disadvantages of each strategy (i.e., graphing; factoring; using the quadratic formula)
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
A.2: : demonstrate an understanding of functions, and make connections between the numeric, graphical, and algebraic representations of quadratic functions;
A.2.1: : explain the meaning of the term function, and distinguish a function from a relation that is not a function, through investigation of linear and quadratic relations using a variety of representations (i.e., tables of values, mapping diagrams, graphs, function machines, equations) and strategies (e.g., using the vertical-line test)
Addition and Subtraction of Functions
Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
A.2.5: : determine, through investigation using technology, the roles of a, h, and k in quadratic functions of the form f(x) = a(x – h)² + k, and describe these roles in terms of transformations on the graph of f(x) = x² (i.e., translations; reflections in the x-axis; vertical stretches and compressions to and from the x-axis)
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
A.2.6: : sketch graphs of g(x) = a(x – h)² + k by applying one or more transformations to the graph of f(x) = x²
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
A.2.7: : express the equation of a quadratic function in the standard form f (x) = ax² + bx + c, given the vertex form f (x) = a(x – h)² + k, and verify, using graphing technology, that these forms are equivalent representations
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
A.2.8: : express the equation of a quadratic function in the vertex form f(x) = a(x – h)² + k, given the standard form f(x) = ax² + bx + c, by completing the square (e.g., using algebra tiles or diagrams; algebraically), including cases where b/a is a simple rational number (e.g., ½, 0.75), and verify, using graphing technology, that these forms are equivalent representations
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
A.2.10: : describe the information (e.g., maximum, intercepts) that can be obtained by inspecting the standard form f(x) = ax² + bx + c, the vertex form f(x) = a(x – h)² + k, and the factored form f(x) = a(x – r)(x – s) of a quadratic function
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
A.2.11: : sketch the graph of a quadratic function whose equation is given in the standard form f(x) = ax² + bx + c by using a suitable strategy (e.g., completing the square and finding the vertex; factoring, if possible, to locate the x-intercepts), and identify the key features of the graph (e.g., the vertex, the x- and y-intercepts, the equation of the axis of symmetry, the intervals where the function is positive or negative, the intervals where the function is increasing or decreasing)
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
A.3: : solve problems involving quadratic functions, including problems arising from real-world applications.
A.3.3: : solve problems arising from real-world applications, given the algebraic representation of a quadratic function (e.g., given the equation of a quadratic function representing the height of a ball over elapsed time, answer questions that involve the maximum height of the ball, the length of time needed for the ball to touch the ground, and the time interval when the ball is higher than a given measurement)
Addition and Subtraction of Functions
Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
B: : Exponential Functions
B.1: : simplify and evaluate numerical expressions involving exponents, and make connections between the numeric, graphical, and algebraic representations of exponential functions;
B.1.4: : determine, through investigation, and describe key properties relating to domain and range, intercepts, increasing/decreasing intervals, and asymptotes (e.g., the domain is the set of real numbers; the range is the set of positive real numbers; the function either increases or decreases throughout its domain) for exponential functions represented in a variety of ways [e.g., tables of values, mapping diagrams, graphs, equations of the form f(x) = a to the x power (a > 0, a is not equal to 1), function machines]
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
B.1.5: : determine, through investigation (e.g., by patterning with and without a calculator), the exponent rules for multiplying and dividing numeric expressions involving exponents [e.g., (½)³ x (½)²], and the exponent rule for simplifying numerical expressions involving a power of a power [e.g., (5³)²], and use the rules to simplify numerical expressions containing integer exponents [e.g., (2³)(2 to the 5th power) = 2 to the 8th power]
Dividing Exponential Expressions
Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Exponents and Power Rules
Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview
Multiplying Exponential Expressions
Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
B.1.6: : distinguish exponential functions from linear and quadratic functions by making comparisons in a variety of ways (e.g., comparing rates of change using finite differences in tables of values; identifying a constant ratio in a table of values; inspecting graphs; comparing equations), within the same context when possible (e.g., simple interest and compound interest, population growth)
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
B.2: : identify and represent exponential functions, and solve problems involving exponential functions, including problems arising from real-world applications;
B.2.2: : identify exponential functions, including those that arise from real-world applications involving growth and decay (e.g., radioactive decay, population growth, cooling rates, pressure in a leaking tire), given various representations (i.e., tables of values, graphs, equations), and explain any restrictions that the context places on the domain and range (e.g., ambient temperature limits the range for a cooling curve)
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
B.2.3: : solve problems using given graphs or equations of exponential functions arising from a variety of real-world applications (e.g., radioactive decay, population growth, height of a bouncing ball, compound interest) by interpreting the graphs or by substituting values for the exponent into the equations
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
B.3: : demonstrate an understanding of compound interest and annuities, and solve related problems.
B.3.3: : determine, through investigation (e.g., using spreadsheets and graphs), that compound interest is an example of exponential growth [e.g., the formulas for compound interest, A = P((1 + i) to the n power), and present value, PV = A((1 + i) to the -n power), are exponential functions, where the number of compounding periods, n, varies]
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
C: : Trigonometric Functions
C.1: : solve problems involving trigonometry in acute triangles using the sine law and the cosine law, including problems arising from real-world applications;
C.1.1: : solve problems, including those that arise from real-world applications (e.g., surveying, navigation), by determining the measures of the sides and angles of right triangles using the primary trigonometric ratios
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
C.1.2: : solve problems involving two right triangles in two dimensions
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
C.2: : demonstrate an understanding of periodic relationships and the sine function, and make connections between the numeric, graphical, and algebraic representations of sine functions;
C.2.3: : make connections between the sine ratio and the sine function by graphing the relationship between angles from 0º to 360º and the corresponding sine ratios, with or without technology (e.g., by generating a table of values using a calculator; by unwrapping the unit circle), defining this relationship as the function f(x) = sinx, and explaining why the relationship is a function
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
C.2.4: : sketch the graph of f(x) = sinx for angle measures expressed in degrees, and determine and describe its key properties (i.e., cycle, domain, range, intercepts, amplitude, period, maximum and minimum values, increasing/ decreasing intervals)
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
C.2.5: : make connections, through investigation with technology, between changes in a real-world situation that can be modelled using a periodic function and transformations of the corresponding graph (e.g., investigate the connection between variables for a swimmer swimming lengths of a pool and transformations of the graph of distance from the starting point versus time)
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
C.3: : identify and represent sine functions, and solve problems involving sine functions, including problems arising from real-world applications.
C.3.3: : pose problems based on applications involving a sine function, and solve these and other such problems by using a given graph or a graph generated with technology from a table of values or from its equation
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote