- Home
- Find Gizmos
- Browse by Standard (USA)
- Michigan Standards
- Mathematics: 4th Grade

# Florida - Mathematics: 4th Grade

## Mathematics Florida Standards | Adopted: 2014

### MAFS.4.G: : Geometry

MAFS.4.G.1.2: : Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.

Classifying Quadrilaterals

Apply constraints to a quadrilateral, and then reshape and resize it. Classify the figure by its constraints. Explore the differences between the different kinds of quadrilaterals. 5 Minute Preview

Classifying Triangles

Place constraints on a triangle and determine what classifications must apply to the triangle. 5 Minute Preview

Parallelogram Conditions

Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview

MAFS.4.G.1.3: : Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

Quilting Bee (Symmetry)

Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry. 5 Minute Preview

### MAFS.4.G.1: : Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

MAFS.4.G.1.2: : Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.

Classifying Quadrilaterals

Apply constraints to a quadrilateral, and then reshape and resize it. Classify the figure by its constraints. Explore the differences between the different kinds of quadrilaterals. 5 Minute Preview

Classifying Triangles

Place constraints on a triangle and determine what classifications must apply to the triangle. 5 Minute Preview

Parallelogram Conditions

Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview

MAFS.4.G.1.3: : Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

Quilting Bee (Symmetry)

Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry. 5 Minute Preview

### MAFS.4.G.1.2: : Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.

Classifying Quadrilaterals

Apply constraints to a quadrilateral, and then reshape and resize it. Classify the figure by its constraints. Explore the differences between the different kinds of quadrilaterals. 5 Minute Preview

Classifying Triangles

Place constraints on a triangle and determine what classifications must apply to the triangle. 5 Minute Preview

Parallelogram Conditions

Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview

### MAFS.4.G.1.3: : Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

Quilting Bee (Symmetry)

Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry. 5 Minute Preview

### MAFS.4.MD: : Measurement and Data

MAFS.4.MD.1.1: : Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table.

Cannonball Clowns (Number Line Estimation)

Launch clowns from a circus cannon and try to hit the target. Drag digit cards on the control panel to set the launch distance and choose an appropriate unit of distance. After practicing your clown-launching skills on a number line, move on to the Big Top, Football Field, School Buses, the Golden Gate Bridge, and more! 5 Minute Preview

Elapsed Time

Calculate the difference between the times given by two analog clocks. Rotate the hands of the clocks to change the time and see how the calculation changes. 5 Minute Preview

MAFS.4.MD.1.2: : Use the four operations to solve word problems involving distances, intervals of time, and money, including problems involving simple fractions or decimals. Represent fractional quantities of distance and intervals of time using linear models.

Elapsed Time

Calculate the difference between the times given by two analog clocks. Rotate the hands of the clocks to change the time and see how the calculation changes. 5 Minute Preview

Measuring Motion

Go on an African safari and observe a variety of animals walking and running across the savanna. Videotape the animals, and then play back the videotape to estimate animal speeds. Which animals run fastest? 5 Minute Preview

Road Trip (Problem Solving)

Plan a cross-country road trip through various U.S. state capitals. First choose a vehicle to drive, and then fill up the tank with gas and go! Find the range and gas mileage of each vehicle, and discover the shortest path between two cities. 5 Minute Preview

Weight and Mass

Use a balance to measure mass and a spring scale to measure the weight of objects. Compare the masses and weights of objects on Earth, Mars, Jupiter, and the Moon. 5 Minute Preview

MAFS.4.MD.3.7: : Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

Polygon Angle Sum

Derive the sum of the angles of a polygon by dividing the polygon into triangles and summing their angles. Vary the number of sides and determine how the sum of the angles changes. Dilate the polygon to see that the sum is unchanged. 5 Minute Preview

### MAFS.4.MD.1: : Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

MAFS.4.MD.1.1: : Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table.

Cannonball Clowns (Number Line Estimation)

Launch clowns from a circus cannon and try to hit the target. Drag digit cards on the control panel to set the launch distance and choose an appropriate unit of distance. After practicing your clown-launching skills on a number line, move on to the Big Top, Football Field, School Buses, the Golden Gate Bridge, and more! 5 Minute Preview

Elapsed Time

Calculate the difference between the times given by two analog clocks. Rotate the hands of the clocks to change the time and see how the calculation changes. 5 Minute Preview

MAFS.4.MD.1.2: : Use the four operations to solve word problems involving distances, intervals of time, and money, including problems involving simple fractions or decimals. Represent fractional quantities of distance and intervals of time using linear models.

Elapsed Time

Measuring Motion

Go on an African safari and observe a variety of animals walking and running across the savanna. Videotape the animals, and then play back the videotape to estimate animal speeds. Which animals run fastest? 5 Minute Preview

Road Trip (Problem Solving)

Plan a cross-country road trip through various U.S. state capitals. First choose a vehicle to drive, and then fill up the tank with gas and go! Find the range and gas mileage of each vehicle, and discover the shortest path between two cities. 5 Minute Preview

Weight and Mass

Use a balance to measure mass and a spring scale to measure the weight of objects. Compare the masses and weights of objects on Earth, Mars, Jupiter, and the Moon. 5 Minute Preview

### MAFS.4.MD.1.1: : Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table.

Cannonball Clowns (Number Line Estimation)

Launch clowns from a circus cannon and try to hit the target. Drag digit cards on the control panel to set the launch distance and choose an appropriate unit of distance. After practicing your clown-launching skills on a number line, move on to the Big Top, Football Field, School Buses, the Golden Gate Bridge, and more! 5 Minute Preview

Elapsed Time

### MAFS.4.MD.1.2: : Use the four operations to solve word problems involving distances, intervals of time, and money, including problems involving simple fractions or decimals. Represent fractional quantities of distance and intervals of time using linear models.

Elapsed Time

Measuring Motion

Go on an African safari and observe a variety of animals walking and running across the savanna. Videotape the animals, and then play back the videotape to estimate animal speeds. Which animals run fastest? 5 Minute Preview

Road Trip (Problem Solving)

Plan a cross-country road trip through various U.S. state capitals. First choose a vehicle to drive, and then fill up the tank with gas and go! Find the range and gas mileage of each vehicle, and discover the shortest path between two cities. 5 Minute Preview

Weight and Mass

Use a balance to measure mass and a spring scale to measure the weight of objects. Compare the masses and weights of objects on Earth, Mars, Jupiter, and the Moon. 5 Minute Preview

### MAFS.4.MD.3: : Geometric measurement: understand concepts of angle and measure angles.

MAFS.4.MD.3.7: : Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

Polygon Angle Sum

Derive the sum of the angles of a polygon by dividing the polygon into triangles and summing their angles. Vary the number of sides and determine how the sum of the angles changes. Dilate the polygon to see that the sum is unchanged. 5 Minute Preview

### MAFS.4.MD.3.7: : Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

Polygon Angle Sum

Derive the sum of the angles of a polygon by dividing the polygon into triangles and summing their angles. Vary the number of sides and determine how the sum of the angles changes. Dilate the polygon to see that the sum is unchanged. 5 Minute Preview

### MAFS.4.NF: : Number and Operations-Fractions

MAFS.4.NF.1.1: : Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

Equivalent Fractions (Fraction Tiles)

Explore fractions using the Fractionator, the machine that makes fraction tiles. Compare fractions and find equivalent fractions by arranging the tiles on two horizontal rows. Explore simplifying fractions. Add fractions and express sums as improper fractions or mixed numbers. 5 Minute Preview

Fraction Artist 1 (Area Models of Fractions)

Develop understanding of fractions by making modern paintings. Find different ways to divide a canvas into equal-sized sections. Make paintings to represent simple fractions and to find fractions that are equivalent to one-half. 5 Minute Preview

Fraction Garden (Comparing Fractions)

Plant flowers in two gardens to help develop fraction sense. The two gardens act as number lines, from 0 to 1. Use the flowers in the gardens to compare fractions and to explore equivalent fractions. Chalk marks can be drawn to divide the garden into equal sections. 5 Minute Preview

MAFS.4.NF.1.2: : Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or

Fraction Garden (Comparing Fractions)

Plant flowers in two gardens to help develop fraction sense. The two gardens act as number lines, from 0 to 1. Use the flowers in the gardens to compare fractions and to explore equivalent fractions. Chalk marks can be drawn to divide the garden into equal sections. 5 Minute Preview

MAFS.4.NF.2.3.a: : Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.

Adding Fractions (Fraction Tiles)

Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview

Fraction Artist 1 (Area Models of Fractions)

Develop understanding of fractions by making modern paintings. Find different ways to divide a canvas into equal-sized sections. Make paintings to represent simple fractions and to find fractions that are equivalent to one-half. 5 Minute Preview

Fraction Artist 2 (Area Models of Fractions)

Extend understanding of fractions by making modern paintings in the style of Piet Mondrian. Create and analyze paintings with different-sized sections. Compare the sizes of unit fractions. Find creative ways to color one-half of a painting. This can be a nice introduction to adding fractions with unlike denominators. 5 Minute Preview

MAFS.4.NF.2.3.b: : Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model.

Fraction Artist 1 (Area Models of Fractions)

Develop understanding of fractions by making modern paintings. Find different ways to divide a canvas into equal-sized sections. Make paintings to represent simple fractions and to find fractions that are equivalent to one-half. 5 Minute Preview

Fraction Artist 2 (Area Models of Fractions)

Extend understanding of fractions by making modern paintings in the style of Piet Mondrian. Create and analyze paintings with different-sized sections. Compare the sizes of unit fractions. Find creative ways to color one-half of a painting. This can be a nice introduction to adding fractions with unlike denominators. 5 Minute Preview

MAFS.4.NF.2.3.d: : Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Extend understanding of fractions by making modern paintings in the style of Piet Mondrian. Create and analyze paintings with different-sized sections. Compare the sizes of unit fractions. Find creative ways to color one-half of a painting. This can be a nice introduction to adding fractions with unlike denominators. 5 Minute Preview

MAFS.4.NF.2.4.a: : Understand a fraction a/b as a multiple of 1/b.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

Model and compare fractions using area models. Set the denominators with the arrow buttons, and then set the numerators with the arrow buttons or by clicking in the models. Compare fractions visually, on a number line, or numerically using the least common denominator. 5 Minute Preview

MAFS.4.NF.2.4.b: : Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

Model and compare fractions using area models. Set the denominators with the arrow buttons, and then set the numerators with the arrow buttons or by clicking in the models. Compare fractions visually, on a number line, or numerically using the least common denominator. 5 Minute Preview

MAFS.4.NF.3.6: : Use decimal notation for fractions with denominators 10 or 100.

Fraction, Decimal, Percent (Area and Grid Models)

Model and compare fractions, decimals, and percents using area models. Each area model can have 10 or 100 sections and can be set to display a fraction, decimal, or percent. Click inside the area models to shade them. Compare the numbers visually or on a number line. 5 Minute Preview

Modeling Decimals (Area and Grid Models)

Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview

MAFS.4.NF.3.7: : Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or

Modeling Decimals (Area and Grid Models)

Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview

Treasure Hunter (Decimals on the Number Line)

Drive a desert highway searching for buried treasure. Learn to use the car's tens, ones, tenths, and hundredths gears, along with a GPS system (number line), to find the right place to dig. Plot your findings on a zoomable number line map. Can you become a master Treasure Hunter? 5 Minute Preview

### MAFS.4.NF.1: : Extend understanding of fraction equivalence and ordering.

MAFS.4.NF.1.1: : Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

Equivalent Fractions (Fraction Tiles)

Explore fractions using the Fractionator, the machine that makes fraction tiles. Compare fractions and find equivalent fractions by arranging the tiles on two horizontal rows. Explore simplifying fractions. Add fractions and express sums as improper fractions or mixed numbers. 5 Minute Preview

Fraction Artist 1 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Plant flowers in two gardens to help develop fraction sense. The two gardens act as number lines, from 0 to 1. Use the flowers in the gardens to compare fractions and to explore equivalent fractions. Chalk marks can be drawn to divide the garden into equal sections. 5 Minute Preview

MAFS.4.NF.1.2: : Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or

Fraction Garden (Comparing Fractions)

### MAFS.4.NF.1.1: : Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

Equivalent Fractions (Fraction Tiles)

Explore fractions using the Fractionator, the machine that makes fraction tiles. Compare fractions and find equivalent fractions by arranging the tiles on two horizontal rows. Explore simplifying fractions. Add fractions and express sums as improper fractions or mixed numbers. 5 Minute Preview

Fraction Artist 1 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

### MAFS.4.NF.1.2: : Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or

Fraction Garden (Comparing Fractions)

### MAFS.4.NF.2: : Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

MAFS.4.NF.2.3.a: : Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.

Adding Fractions (Fraction Tiles)

Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

MAFS.4.NF.2.3.b: : Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

MAFS.4.NF.2.3.d: : Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

MAFS.4.NF.2.4.a: : Understand a fraction a/b as a multiple of 1/b.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

Model and compare fractions using area models. Set the denominators with the arrow buttons, and then set the numerators with the arrow buttons or by clicking in the models. Compare fractions visually, on a number line, or numerically using the least common denominator. 5 Minute Preview

MAFS.4.NF.2.4.b: : Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

### MAFS.4.NF.2.3: : Understand a fraction a/b with a > 1 as a sum of fractions 1/b.

MAFS.4.NF.2.3.a: : Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.

Adding Fractions (Fraction Tiles)

Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

MAFS.4.NF.2.3.b: : Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

MAFS.4.NF.2.3.d: : Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Adding Fractions (Fraction Tiles)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

### MAFS.4.NF.2.4: : Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.

MAFS.4.NF.2.4.a: : Understand a fraction a/b as a multiple of 1/b.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

MAFS.4.NF.2.4.b: : Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

### MAFS.4.NF.2.4.a: : Understand a fraction a/b as a multiple of 1/b.

MAFS.4.NF.2.4.a: : Understand a fraction a/b as a multiple of 1/b.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

### MAFS.4.NF.3: : Understand decimal notation for fractions, and compare decimal fractions.

MAFS.4.NF.3.6: : Use decimal notation for fractions with denominators 10 or 100.

Fraction, Decimal, Percent (Area and Grid Models)

Model and compare fractions, decimals, and percents using area models. Each area model can have 10 or 100 sections and can be set to display a fraction, decimal, or percent. Click inside the area models to shade them. Compare the numbers visually or on a number line. 5 Minute Preview

Modeling Decimals (Area and Grid Models)

Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview

MAFS.4.NF.3.7: : Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or

Modeling Decimals (Area and Grid Models)

Treasure Hunter (Decimals on the Number Line)

Drive a desert highway searching for buried treasure. Learn to use the car's tens, ones, tenths, and hundredths gears, along with a GPS system (number line), to find the right place to dig. Plot your findings on a zoomable number line map. Can you become a master Treasure Hunter? 5 Minute Preview

### MAFS.4.NF.3.6: : Use decimal notation for fractions with denominators 10 or 100.

MAFS.4.NF.3.6: : Use decimal notation for fractions with denominators 10 or 100.

Fraction, Decimal, Percent (Area and Grid Models)

Model and compare fractions, decimals, and percents using area models. Each area model can have 10 or 100 sections and can be set to display a fraction, decimal, or percent. Click inside the area models to shade them. Compare the numbers visually or on a number line. 5 Minute Preview

Modeling Decimals (Area and Grid Models)

### MAFS.4.NF.3.7: : Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or

Modeling Decimals (Area and Grid Models)

Treasure Hunter (Decimals on the Number Line)

Drive a desert highway searching for buried treasure. Learn to use the car's tens, ones, tenths, and hundredths gears, along with a GPS system (number line), to find the right place to dig. Plot your findings on a zoomable number line map. Can you become a master Treasure Hunter? 5 Minute Preview

### MAFS.4.NBT: : Number and Operations in Base Ten

MAFS.4.NBT.1.1: : Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.

Cannonball Clowns (Number Line Estimation)

Whole Numbers with Base-10 Blocks

Use base-10 blocks to model, add, and subtract whole numbers. Learn about place value using flats (hundreds), rods (tens), and cubes (ones). Group or ungroup blocks as needed to add or subtract. This regrouping is often called "carrying" when adding, and "borrowing" when subtracting. 5 Minute Preview

MAFS.4.NBT.1.2: : Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and

Cannonball Clowns (Number Line Estimation)

MAFS.4.NBT.1.3: : Use place value understanding to round multi-digit whole numbers to any place.

Rounding Whole Numbers (Number Line)

Place points on a number line. Round these values to the nearest ten or hundred. Visualize rounding by showing the number line as a hill or series of hills. These hills cause the points to roll to the nearest valley (nearest multiple of ten or one hundred). 5 Minute Preview

MAFS.4.NBT.2.4: : Fluently add and subtract multi-digit whole numbers using the standard algorithm.

Cargo Captain (Multi-digit Subtraction)

You are the captain of an interplanetary cargo ship, delivering important supplies to the outer planets. The cargo can be stored in barrels, crates, and holds. (There are 10 barrels in a crate, and 10 crates in a hold.) Model multi-digit subtraction by unloading cargo on each planet. 5 Minute Preview

Target Sum Card Game (Multi-digit Addition)

Play an addition card game! The goal is to create a sum that is as close as possible to the target sum. Students will deepen their understanding of place value as they get better at playing the game. Many game options allow students to vary the game for more practice. The game can be played with one or two players. 5 Minute Preview

Whole Numbers with Base-10 Blocks

Use base-10 blocks to model, add, and subtract whole numbers. Learn about place value using flats (hundreds), rods (tens), and cubes (ones). Group or ungroup blocks as needed to add or subtract. This regrouping is often called "carrying" when adding, and "borrowing" when subtracting. 5 Minute Preview

MAFS.4.NBT.2.6: : Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

No Alien Left Behind (Division with Remainders)

The alien school children from the planet Zigmo travel to distant planets on a field trip. The goal is to select a bus size so that all buses are full and no aliens are left behind. This is a nice illustration of division with remainders. 5 Minute Preview

### MAFS.4.NBT.1: : Generalize place value understanding for multi-digit whole numbers.

MAFS.4.NBT.1.1: : Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.

Cannonball Clowns (Number Line Estimation)

Whole Numbers with Base-10 Blocks

Use base-10 blocks to model, add, and subtract whole numbers. Learn about place value using flats (hundreds), rods (tens), and cubes (ones). Group or ungroup blocks as needed to add or subtract. This regrouping is often called "carrying" when adding, and "borrowing" when subtracting. 5 Minute Preview

MAFS.4.NBT.1.2: : Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and

Cannonball Clowns (Number Line Estimation)

MAFS.4.NBT.1.3: : Use place value understanding to round multi-digit whole numbers to any place.

Rounding Whole Numbers (Number Line)

Place points on a number line. Round these values to the nearest ten or hundred. Visualize rounding by showing the number line as a hill or series of hills. These hills cause the points to roll to the nearest valley (nearest multiple of ten or one hundred). 5 Minute Preview

### MAFS.4.NBT.1.1: : Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.

Cannonball Clowns (Number Line Estimation)

Whole Numbers with Base-10 Blocks

### MAFS.4.NBT.1.2: : Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and

Cannonball Clowns (Number Line Estimation)

### MAFS.4.NBT.1.3: : Use place value understanding to round multi-digit whole numbers to any place.

MAFS.4.NBT.1.3: : Use place value understanding to round multi-digit whole numbers to any place.

Rounding Whole Numbers (Number Line)

Place points on a number line. Round these values to the nearest ten or hundred. Visualize rounding by showing the number line as a hill or series of hills. These hills cause the points to roll to the nearest valley (nearest multiple of ten or one hundred). 5 Minute Preview

### MAFS.4.NBT.2: : Use place value understanding and properties of operations to perform multi-digit arithmetic.

MAFS.4.NBT.2.4: : Fluently add and subtract multi-digit whole numbers using the standard algorithm.

Cargo Captain (Multi-digit Subtraction)

You are the captain of an interplanetary cargo ship, delivering important supplies to the outer planets. The cargo can be stored in barrels, crates, and holds. (There are 10 barrels in a crate, and 10 crates in a hold.) Model multi-digit subtraction by unloading cargo on each planet. 5 Minute Preview

Target Sum Card Game (Multi-digit Addition)

Play an addition card game! The goal is to create a sum that is as close as possible to the target sum. Students will deepen their understanding of place value as they get better at playing the game. Many game options allow students to vary the game for more practice. The game can be played with one or two players. 5 Minute Preview

Whole Numbers with Base-10 Blocks

MAFS.4.NBT.2.6: : Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

No Alien Left Behind (Division with Remainders)

The alien school children from the planet Zigmo travel to distant planets on a field trip. The goal is to select a bus size so that all buses are full and no aliens are left behind. This is a nice illustration of division with remainders. 5 Minute Preview

### MAFS.4.NBT.2.4: : Fluently add and subtract multi-digit whole numbers using the standard algorithm.

MAFS.4.NBT.2.4: : Fluently add and subtract multi-digit whole numbers using the standard algorithm.

Cargo Captain (Multi-digit Subtraction)

You are the captain of an interplanetary cargo ship, delivering important supplies to the outer planets. The cargo can be stored in barrels, crates, and holds. (There are 10 barrels in a crate, and 10 crates in a hold.) Model multi-digit subtraction by unloading cargo on each planet. 5 Minute Preview

Target Sum Card Game (Multi-digit Addition)

Play an addition card game! The goal is to create a sum that is as close as possible to the target sum. Students will deepen their understanding of place value as they get better at playing the game. Many game options allow students to vary the game for more practice. The game can be played with one or two players. 5 Minute Preview

Whole Numbers with Base-10 Blocks

### MAFS.4.NBT.2.6: : Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

No Alien Left Behind (Division with Remainders)

The alien school children from the planet Zigmo travel to distant planets on a field trip. The goal is to select a bus size so that all buses are full and no aliens are left behind. This is a nice illustration of division with remainders. 5 Minute Preview

### MAFS.4.OA: : Operations and Algebraic Thinking

MAFS.4.OA.1.1: : Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

Critter Count (Modeling Multiplication)

Use groups of critters on leaves to model multiplication as repeated addition. Change the expression to change the number of groups or the number of critters per group. Display the critters either on leaves or as a rectangular array. 5 Minute Preview

MAFS.4.OA.1.2: : Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

Using Algebraic Equations

Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview

MAFS.4.OA.1.3: : Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

No Alien Left Behind (Division with Remainders)

MAFS.4.OA.2.4.a: : Find all factor pairs for a whole number in the range 1-100.

Factor Trees (Factoring Numbers)

The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview

MAFS.4.OA.2.4.b: : Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number.

Factor Trees (Factoring Numbers)

The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview

MAFS.4.OA.2.4.c: : Determine whether a given whole number in the range 1-100 is prime or composite.

Factor Trees (Factoring Numbers)

The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview

MAFS.4.OA.3.5: : Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.

Finding Patterns

Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview

Pattern Flip (Patterns)

In the Pattern Flip carnival game, you are shown a pattern of cards. The first cards are face-up so you can see the pattern, and the rest are face-down. Can you guess which animals are on the face-down cards? Use one of the preset patterns, or make your own custom pattern. Good luck! 5 Minute Preview

### MAFS.4.OA.1: : Use the four operations with whole numbers to solve problems.

MAFS.4.OA.1.1: : Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

Critter Count (Modeling Multiplication)

Use groups of critters on leaves to model multiplication as repeated addition. Change the expression to change the number of groups or the number of critters per group. Display the critters either on leaves or as a rectangular array. 5 Minute Preview

MAFS.4.OA.1.2: : Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

Using Algebraic Equations

Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview

MAFS.4.OA.1.3: : Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

No Alien Left Behind (Division with Remainders)

### MAFS.4.OA.1.1: : Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

Critter Count (Modeling Multiplication)

Use groups of critters on leaves to model multiplication as repeated addition. Change the expression to change the number of groups or the number of critters per group. Display the critters either on leaves or as a rectangular array. 5 Minute Preview

### MAFS.4.OA.1.2: : Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

Using Algebraic Equations

Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview

### MAFS.4.OA.1.3: : Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

No Alien Left Behind (Division with Remainders)

### MAFS.4.OA.2: : Gain familiarity with factors and multiples.

MAFS.4.OA.2.4.a: : Find all factor pairs for a whole number in the range 1-100.

Factor Trees (Factoring Numbers)

MAFS.4.OA.2.4.b: : Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number.

Factor Trees (Factoring Numbers)

MAFS.4.OA.2.4.c: : Determine whether a given whole number in the range 1-100 is prime or composite.

Factor Trees (Factoring Numbers)

### MAFS.4.OA.2.4: : Investigate factors and multiples.

MAFS.4.OA.2.4.a: : Find all factor pairs for a whole number in the range 1-100.

Factor Trees (Factoring Numbers)

MAFS.4.OA.2.4.b: : Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number.

Factor Trees (Factoring Numbers)

MAFS.4.OA.2.4.c: : Determine whether a given whole number in the range 1-100 is prime or composite.

Factor Trees (Factoring Numbers)

### MAFS.4.OA.2.4.a: : Find all factor pairs for a whole number in the range 1-100.

MAFS.4.OA.2.4.a: : Find all factor pairs for a whole number in the range 1-100.

Factor Trees (Factoring Numbers)

Factor Trees (Factoring Numbers)

### MAFS.4.OA.2.4.c: : Determine whether a given whole number in the range 1-100 is prime or composite.

MAFS.4.OA.2.4.c: : Determine whether a given whole number in the range 1-100 is prime or composite.

Factor Trees (Factoring Numbers)

### MAFS.4.OA.3: : Generate and analyze patterns.

MAFS.4.OA.3.5: : Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.

Finding Patterns

Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview

Pattern Flip (Patterns)

In the Pattern Flip carnival game, you are shown a pattern of cards. The first cards are face-up so you can see the pattern, and the rest are face-down. Can you guess which animals are on the face-down cards? Use one of the preset patterns, or make your own custom pattern. Good luck! 5 Minute Preview

### MAFS.4.OA.3.5: : Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.

Finding Patterns

Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview

Pattern Flip (Patterns)

In the Pattern Flip carnival game, you are shown a pattern of cards. The first cards are face-up so you can see the pattern, and the rest are face-down. Can you guess which animals are on the face-down cards? Use one of the preset patterns, or make your own custom pattern. Good luck! 5 Minute Preview

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available January 1 and July 1.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote