- Home
- Find Gizmos
- Browse by Standard (CAN)
- Alabama Standards
- Science: 12th Grade Chemistry
Yukon Territory - Science: 12th Grade Chemistry
Learning Outcomes | Adopted: 2006
A1: : demonstrate awareness that reactions occur at differing rates
A1: : demonstrate awareness that reactions occur at differing rates
Collision Theory
Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview
A2: : experimentally determine rate of a reaction
A2: : experimentally determine rate of a reaction
Collision Theory
Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview
A3: : demonstrate knowledge of collision theory
A3: : demonstrate knowledge of collision theory
Collision Theory
Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview
Temperature and Particle Motion
Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared. 5 Minute Preview
A5: : apply collision theory to explain how reaction rates can be changed
A5: : apply collision theory to explain how reaction rates can be changed
Collision Theory
Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview
A6: : analyse the reaction mechanism for a reacting system
A6: : analyse the reaction mechanism for a reacting system
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview
A8: : describe the uses of specific catalysts in a variety of situations
A8: : describe the uses of specific catalysts in a variety of situations
Collision Theory
Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview
B1: : explain the concept of chemical equilibrium with reference to reacting systems
B1: : explain the concept of chemical equilibrium with reference to reacting systems
Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview
Equilibrium and Pressure
Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview
B3: : apply Le Châtelierâ??s principle to the shifting of equilibrium
B3: : apply Le Châtelierâ??s principle to the shifting of equilibrium
Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview
Equilibrium and Pressure
Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview
B5: : draw conclusions from the equilibrium constant expression
B5: : draw conclusions from the equilibrium constant expression
Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview
Equilibrium and Pressure
Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview
B6: : perform calculations to evaluate the changes in the value of K(eq) and in concentrations of substances within an equilibrium system
B6: : perform calculations to evaluate the changes in the value of K(eq) and in concentrations of substances within an equilibrium system
Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview
Equilibrium and Pressure
Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview
F1: : demonstrate an ability to design, perform, and analyse a titration experiment involving the following:
F1.1: : primary standards
Titration
Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview
F1.2: : standardized solutions
Titration
Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview
F1.3: : titration curves
Titration
Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview
F1.4: : appropriate indicators
Titration
Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview
F2: : describe an indicator as an equilibrium system
F2: : describe an indicator as an equilibrium system
Titration
Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview
F3: : perform and interpret calculations involving the pH in a solution and Ka for an indicator
F3: : perform and interpret calculations involving the pH in a solution and Ka for an indicator
Titration
Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote