- Home
- Find Gizmos
- Browse by Standard (CAN)
- Arizona Standards
- Mathematics: 12th Grade Calculus and Vectors
Ontario - Mathematics: 12th Grade Calculus and Vectors
Ontario Curriculum | Adopted: 2010
A: : Rate of Change
A.1: : demonstrate an understanding of rate of change by making connections between average rate of change over an interval and instantaneous rate of change at a point, using the slopes of secants and tangents and the concept of the limit;
A.1.1: : describe examples of real-world applications of rates of change, represented in a variety of ways (e.g., in words, numerically, graphically, algebraically)
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
A.3: : verify graphically and algebraically the rules for determining derivatives; apply these rules to determine the derivatives of polynomial, sinusoidal, exponential, rational, and radical functions, and simple combinations of functions; and solve related problems.
A.3.3: : determine algebraically the derivatives of polynomial functions, and use these derivatives to determine the instantaneous rate of change at a point and to determine point(s) at which a given rate of change occurs
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
B: : Derivatives and Their Applications
B.1: : make connections, graphically and algebraically, between the key features of a function and its first and second derivatives, and use the connections in curve sketching;
B.1.2: : recognize the second derivative as the rate of change of the rate of change (i.e., the rate of change of the slope of the tangent), and sketch the graphs of the first and second derivatives, given the graph of a smooth function
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
B.1.3: : determine algebraically the equation of the second derivative f"(x) of a polynomial or simple rational function f(x), and make connections, through investigation using technology, between the key features of the graph of the function (e.g., increasing/ decreasing intervals, local maxima and minima, points of inflection, intervals of concavity) and corresponding features of the graphs of its first and second derivatives (e.g., for an increasing interval of the function, the first derivative is positive; for a point of inflection of the function, the slopes of tangents change their behaviour from increasing to decreasing or from decreasing to increasing, the first derivative has a maximum or minimum, and the second derivative is zero)
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
B.1.5: : sketch the graph of a polynomial function, given its equation, by using a variety of strategies (e.g., using the sign of the first derivative; using the sign of the second derivative; identifying even or odd functions) to determine its key features (e.g., increasing/ decreasing intervals, intercepts, local maxima and minima, points of inflection, intervals of concavity), and verify using technology
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
C: : Geometry and Algebra of Vectors
C.1: : demonstrate an understanding of vectors in two-space and three-space by representing them algebraically and geometrically and by recognizing their applications;
C.1.1: : recognize a vector as a quantity with both magnitude and direction, and identify, gather, and interpret information about real-world applications of vectors (e.g., displacement, forces involved in structural design, simple animation of computer graphics, velocity determined using GPS)
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.1.2: : represent a vector in two-space geometrically as a directed line segment, with directions expressed in different ways (e.g., 320º; N 40º W), and algebraically (e.g., using Cartesian coordinates; using polar coordinates), and recognize vectors with the same magnitude and direction but different positions as equal vectors
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.1.3: : determine, using trigonometric relationships [e.g., x = rcos Theta, y = rsin Theta, Theta = tan to the -1 power (y / x) or tan to the -1 power (y / x) + 180º, r = square root of (x² + y²)], the Cartesian representation of a vector in two-space given as a directed line segment, or the representation as a directed line segment of a vector in two-space given in Cartesian form [e.g., representing the vector (8, 6) as a directed line segment]
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.1.4: : recognize that points and vectors in three-space can both be represented using Cartesian coordinates, and determine the distance between two points and the magnitude of a vector using their Cartesian representations
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.2: : perform operations on vectors in two-space and three-space, and use the properties of these operations to solve problems, including those arising from real-world applications;
C.2.1: : perform the operations of addition, subtraction, and scalar multiplication on vectors represented as directed line segments in two-space, and on vectors represented in Cartesian form in two-space and three-space
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.2.2: : determine, through investigation with and without technology, some properties (e.g., commutative, associative, and distributive properties) of the operations of addition, subtraction, and scalar multiplication of vectors
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.2.3: : solve problems involving the addition, subtraction, and scalar multiplication of vectors, including problems arising from real-world applications
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.2.4: : perform the operation of dot product on two vectors represented as directed line segments (i.e., using vector a times vector b = (absolute value of vector a)(absolute value of vector b)(cos Theta)) and in Cartesian form (i.e., using vector a times vector b = (a base 1 of b base 1) + (a base 2 of b base 2) or (vector a times vector b) = (a base 1 of b base 1) + (a base 2 of b base 2) + (a base 3 of b base 3)) in two-space and three-space, and describe applications of the dot product (e.g., determining the angle between two vectors; determining the projection of one vector onto another)
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.2.5: : determine, through investigation, properties of the dot product (e.g., investigate whether it is commutative, distributive, or associative; investigate the dot product of a vector with itself and the dot product of orthogonal vectors)
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.2.8: : solve problems involving dot product and cross product (e.g., determining projections, the area of a parallelogram, the volume of a parallelepiped), including problems arising from real-world applications (e.g., determining work, torque, ground speed, velocity, force)
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
C.3: : distinguish between the geometric representations of a single linear equation or a system of two linear equations in two-space and three-space, and determine different geometric configurations of lines and planes in three-space;
C.3.1: : recognize that the solution points (x, y) in two-space of a single linear equation in two variables form a line and that the solution points (x, y) in two-space of a system of two linear equations in two variables determine the point of intersection of two lines, if the lines are not coincident or parallel
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote