PS: Physical Sciences

PS1-MS: Matter and Its Interactions

PS1-MS-1: Students who demonstrate understanding can: Develop models to describe the atomic composition of simple molecules and extended structures.

Dehydration Synthesis

PS1-MS-2: Students who demonstrate understanding can: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Chemical Changes

PS1-MS-4: Students who demonstrate understanding can: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Melting Points
Phase Changes
Phases of Water
Temperature and Particle Motion

PS1-MS-5: Students who demonstrate understanding can: Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Balancing Chemical Equations
Chemical Changes
Chemical Equations

PS1-MS-6: Students who demonstrate understanding can: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Feel the Heat

PS2-MS: Motion and Stability: Forces and Interactions

PS2-MS-1: Students who demonstrate understanding can: Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.

Crumple Zones

PS2-MS-2: Students who demonstrate understanding can: Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Crumple Zones
Fan Cart Physics
Force and Fan Carts
Free-Fall Laboratory

PS2-MS-3: Students who demonstrate understanding can: Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Charge Launcher
Magnetic Induction
Pith Ball Lab

PS2-MS-4: Students who demonstrate understanding can: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Gravitational Force
Gravity Pitch
Weight and Mass

PS2-MS-5: Students who demonstrate understanding can: Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Charge Launcher
Coulomb Force (Static)
Electromagnetic Induction
Magnetic Induction
Magnetism
Pith Ball Lab

PS3-MS: Energy

PS3-MS-1: Students who demonstrate understanding can: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Air Track
Energy of a Pendulum
Inclined Plane - Sliding Objects
Roller Coaster Physics
Sled Wars
Trebuchet

PS3-MS-2: Students who demonstrate understanding can: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Energy Conversion in a System
Energy of a Pendulum
Inclined Plane - Sliding Objects
Potential Energy on Shelves
Roller Coaster Physics
Trebuchet

PS3-MS-3: Students who demonstrate understanding can: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Feel the Heat

PS3-MS-4: Students who demonstrate understanding can: Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Calorimetry Lab
Energy Conversion in a System
Feel the Heat
Heat Transfer by Conduction
Phase Changes

PS3-MS-5: Students who demonstrate understanding can: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Air Track
Energy Conversion in a System
Sled Wars

PS4-MS: Waves

PS4-MS-1: Students who demonstrate understanding can: Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Waves

PS4-MS-2: Students who demonstrate understanding can: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Basic Prism
Color Absorption
Earthquakes 1 - Recording Station
Heat Absorption
Laser Reflection
Longitudinal Waves
Radiation
Refraction
Ripple Tank
Waves

LS: Life Sciences

LS1-MS: Molecules to Organisms: Structure and Processes

MS-LS1-1: Students who demonstrate understanding can: Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Cell Types
Embryo Development

MS-LS1-2: Students who demonstrate understanding can: Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Cell Energy Cycle
Cell Structure
Cell Types
Osmosis
RNA and Protein Synthesis

MS-LS1-3: Students who demonstrate understanding can: Use argument supported by evidence for how a living organism is a system of interacting subsystems composed of groups of cells.

Cell Types
Circulatory System
Digestive System
Senses

MS-LS1-5: Students who demonstrate understanding can: Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Cell Energy Cycle
Food Chain
Photosynthesis Lab
Plants and Snails
Pond Ecosystem

MS-LS1-6: Students who demonstrate understanding can: Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

Cell Energy Cycle
Dehydration Synthesis
Digestive System

LS2-MS: Ecosystems: Interactions, Energy, and Dynamics

LS2-MS-1: Students who demonstrate understanding can: Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Coral Reefs 1 - Abiotic Factors
Coral Reefs 2 - Biotic Factors
Food Chain
Forest Ecosystem
Pond Ecosystem
Prairie Ecosystem
Rabbit Population by Season
Rainfall and Bird Beaks - Metric

LS2-MS-2: Students who demonstrate understanding can: Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Coral Reefs 1 - Abiotic Factors
Coral Reefs 2 - Biotic Factors
Food Chain
Forest Ecosystem
Pond Ecosystem
Prairie Ecosystem

LS2-MS-3: Students who demonstrate understanding can: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Carbon Cycle
Coral Reefs 1 - Abiotic Factors
Coral Reefs 2 - Biotic Factors
Food Chain
Forest Ecosystem
Pond Ecosystem
Prairie Ecosystem

LS2-MS-4: Students who demonstrate understanding can: Develop a model to describe the flow of energy through the trophic levels of an ecosystem.

Food Chain
Forest Ecosystem

LS2-MS-5: Students who demonstrate understanding can: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Coral Reefs 1 - Abiotic Factors
Coral Reefs 2 - Biotic Factors
Food Chain
Forest Ecosystem
Pond Ecosystem
Prairie Ecosystem
Rabbit Population by Season
Rainfall and Bird Beaks - Metric

LS2-MS-6: Students who demonstrate understanding can: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

GMOs and the Environment

LS3-MS: Heredity: Inheritance and Variation of Traits

LS3-MS-1: Students who demonstrate understanding can: Develop and use a model to describe why mutations may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Evolution: Mutation and Selection
Genetic Engineering
Human Karyotyping

LS3-MS-2: Students who demonstrate understanding can: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Chicken Genetics
Fast Plants® 1 - Growth and Genetics
Fast Plants® 2 - Mystery Parent
Inheritance
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

LS4-MS: Biological Adaptation: Unity and Diversity

LS4-MS-1: Students who demonstrate understanding can: Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Human Evolution - Skull Analysis

LS4-MS-2: Students who demonstrate understanding can: Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer relationships.

Cladograms
Embryo Development
Human Evolution - Skull Analysis

LS4-MS-3: Students who demonstrate understanding can: Analyze displays of pictorial data to compare patterns of similarities in the anatomical structures across multiple species of similar classification levels to identify relationships.

Embryo Development

LS4-MS-4: Students who demonstrate understanding can: Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Evolution: Mutation and Selection
Evolution: Natural and Artificial Selection
Microevolution
Natural Selection
Rainfall and Bird Beaks - Metric

LS4-MS-5: Students who demonstrate understanding can: Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Evolution: Natural and Artificial Selection
GMOs and the Environment
Genetic Engineering

LS4-MS-6: Students who demonstrate understanding can: Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Evolution: Mutation and Selection
Evolution: Natural and Artificial Selection
Microevolution

ESS: Earth and Space Sciences

ESS1-MS: Earth’s Place in the Universe

ESS1-MS-1: Students who demonstrate understanding can: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.

2D Eclipse
3D Eclipse
Eclipse
Moonrise, Moonset, and Phases
Phases of the Moon
Seasons Around the World
Seasons in 3D
Seasons: Earth, Moon, and Sun
Seasons: Why do we have them?
Summer and Winter

ESS1-MS-2: Students who demonstrate understanding can: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

Gravity Pitch
Solar System
Solar System Explorer

ESS1-MS-3: Students who demonstrate understanding can: Analyze and interpret data to determine scale properties of objects in the solar system.

Solar System
Solar System Explorer
Weight and Mass

ESS2-MS: Earth’s Systems

ESS2-MS-1: Students who demonstrate understanding can: Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Carbon Cycle
Cell Energy Cycle
Plate Tectonics
Rock Cycle
Weathering

ESS2-MS-2: Students who demonstrate understanding can: Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Erosion Rates
Plate Tectonics
River Erosion
Rock Cycle
Weathering

ESS2-MS-3: Students who demonstrate understanding can: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Building Pangaea
Plate Tectonics

ESS2-MS-4: Students who demonstrate understanding can: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

Water Cycle

ESS2-MS-5: Students who demonstrate understanding can: Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

Coastal Winds and Clouds - Metric
Hurricane Motion - Metric
Weather Maps - Metric

ESS3-MS: Earth and Human Activity

ESS3-MS-1: Students who demonstrate understanding can: Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Carbon Cycle

ESS3-MS-2: Students who demonstrate understanding can: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Hurricane Motion - Metric

ESS3-MS-3: Students who demonstrate understanding can: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

GMOs and the Environment

ESS3-MS-4: Students who demonstrate understanding can: Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Carbon Cycle
Coral Reefs 2 - Biotic Factors

ESS3-MS-5: Students who demonstrate understanding can: Ask questions to interpret evidence of the factors that cause climate variability over time.

Carbon Cycle
Greenhouse Effect - Metric

Correlation last revised: 9/22/2020

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.