College and Career Ready Standards

A.SSE.1: Interpret expressions that represent a quantity in terms of its context.

A.SSE.1a: Interpret parts of an expression, such as terms, factors, and coefficients.

Compound Interest

Operations with Radical Expressions

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

A.SSE.1b: Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r)^n as the product of P and (1 + r)^n.

Compound Interest

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

Translating and Scaling Functions

Using Algebraic Expressions

A.SSE.2: Use the structure of an expression to identify ways to rewrite it.

Dividing Exponential Expressions

Equivalent Algebraic Expressions I

Equivalent Algebraic Expressions II

Exponents and Power Rules

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

Multiplying Exponential Expressions

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

Simplifying Trigonometric Expressions

Solving Algebraic Equations II

Using Algebraic Expressions

A.SSE.3: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

A.SSE.3a: Factor a quadratic expression to reveal the zeros of the function it defines.

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

Quadratics in Factored Form

A.SSE.3b: Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

A.SSE.3c: Use the properties of exponents to transform expressions for exponential functions.

Dividing Exponential Expressions

Exponents and Power Rules

A.APR.1: Add, subtract, and multiply polynomials.

Addition and Subtraction of Functions

Addition of Polynomials

Modeling the Factorization of *x*^{2}+*bx*+*c*

A.APR.2: Factor higher degree polynomials; identifying that some polynomials are prime.

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

A.APR.3: Know and apply the Remainder Theorem: For a polynomial p(x) and a number c, the remainder on division by (x - c) is p(c), so p(c) = 0 if and only if (x - c) is a factor of p(x).

Dividing Polynomials Using Synthetic Division

Polynomials and Linear Factors

A.APR.4: Generate polynomial identities from a pattern.

A.APR.5: Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle. The Binomial Theorem can be proven by mathematical induction or by a combinatorial argument.

A.CED.1: Apply and extend previous understanding to create equations and inequalities in one variable and use them to solve problems.

Absolute Value Equations and Inequalities

Arithmetic Sequences

Compound Interest

Exploring Linear Inequalities in One Variable

Geometric Sequences

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Quadratic Inequalities

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

Using Algebraic Equations

A.CED.2: Apply and extend previous understanding to create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Absolute Value Equations and Inequalities

Circles

Compound Interest

Linear Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Quadratics in Polynomial Form

Quadratics in Vertex Form

Slope-Intercept Form of a Line

Solving Equations on the Number Line

Standard Form of a Line

Using Algebraic Equations

A.CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

Linear Inequalities in Two Variables

Linear Programming

Solving Linear Systems (Standard Form)

Systems of Linear Inequalities (Slope-intercept form)

A.CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Area of Triangles

Solving Formulas for any Variable

A.REI.1: Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Formulas for any Variable

Solving Two-Step Equations

A.REI.2: Apply and extend previous understanding to solve equations, inequalities, and compound inequalities in one variable, including literal equations and inequalities.

Absolute Value Equations and Inequalities

Area of Triangles

Compound Inequalities

Exploring Linear Inequalities in One Variable

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations I

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Formulas for any Variable

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

A.REI.3: Solve equations in one variable and give examples showing how extraneous solutions may arise.

A.REI.3a: Solve rational, absolute value and square root equations.

Absolute Value Equations and Inequalities

Radical Functions

A.REI.4: Solve radical and rational exponent equations and inequalities in one variable, and give examples showing how extraneous solutions may arise.

A.REI.5: Solve quadratic equations and inequalities.

A.REI.5a: Solve quadratic equations by inspection (e.g., for x² = 49), taking square roots, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives no real solutions.

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

Points in the Complex Plane

Roots of a Quadratic

A.REI.5b: Solve quadratic equations with complex solutions written in the form a ± bi for real numbers a and b.

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

Points in the Complex Plane

Roots of a Quadratic

A.REI.5c: Use the method of completing the square to transform and solve any quadratic equation in x into an equation of the form (x - p)² = q that has the same solutions.

A.REI.6: Analyze and solve pairs of simultaneous linear equations.

A.REI.6a: Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

Cat and Mouse (Modeling with Linear Systems)

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

A.REI.6c: Solve real-world and mathematical problems leading to two linear equations in two variables.

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

A.REI.7: Represent a system of linear equations as a single matrix equation and solve (incorporating technology) for matrices of dimension 3 × 3 or greater.

Solving Linear Systems (Matrices and Special Solutions)

A.REI.8: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

Absolute Value Equations and Inequalities

Circles

Ellipses

Hyperbolas

Parabolas

Point-Slope Form of a Line

Points, Lines, and Equations

Standard Form of a Line

A.REI.9: Solve an equation f(x) = g(x) by graphing y = f(x) and y = g(x) and finding the x-value of the intersection point. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Cat and Mouse (Modeling with Linear Systems)

Point-Slope Form of a Line

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Standard Form of a Line

A.REI.10: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Linear Inequalities in Two Variables

Linear Programming

Systems of Linear Inequalities (Slope-intercept form)

Correlation last revised: 9/15/2020

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.