6: The natural world is defined by organisms and life processes which conform to principles regarding conservation and transformation of matter and energy. Living organisms use matter and energy to build their structures and conduct their life processes, have mechanisms and behaviors to regulate their internal environments and to respond to changes in their surroundings. Knowledge about life processes can be applied to improving human health and well being.

6.1: Living systems, from the organismic to the cellular level, demonstrate the complementary nature of structure and function.

6.1.3: Explain how organelles of single-celled organisms function as a system to perform the same basic life processes as are performed in multi-cellular organisms (e.g., acquisition of energy, elimination of waste, reproduction, gas exchange, growth, repair, and protein synthesis).

Paramecium Homeostasis
RNA and Protein Synthesis

6.1.5: Show how water moves in and out of cells down a concentration gradient. Recognize that this process, known as osmosis, requires no input of energy.

Osmosis

6.1.6: Explain the role of cell membranes as highly selective barriers (e.g., diffusion, osmosis, active transport).

Osmosis

6.1.7: Distinguish between active and passive transport. Recognize that active transport requires energy input to move molecules from an area of low concentration to an area of high concentration (against the concentration gradient).

Osmosis

6.1.11: Explain how the cells of a multi-cellular organisms work together for the benefit of the colonial or singular organism.

Paramecium Homeostasis

6.2: All organisms transfer matter and convert energy from one form to another. Both matter and energy are necessary to build and maintain structures within the organism.

6.2.3: Explain that physically breaking down food into smaller pieces by mechanical digestion helps facilitate breakdown (by increasing surface area) into chemical components and that digestive enzymes are necessary for the breakdown of food into those chemical components (e.g., starch to glucose, lipids and glycerol to fatty acids, proteins to amino acids).

Digestive System

6.2.6: Explain the processes used by autotrophs to transform light energy into chemical energy in the form of simple sugars. Give examples of how these compounds are used by living things as sources of matter and energy.

Cell Energy Cycle

6.2.7: Describe the process by which water is removed from sugar molecules (dehydration synthesis) to form carbohydrates and is added to break them down (hydrolysis).

Dehydration Synthesis

6.2.8: Describe photosynthesis as an energy storing process and explain how environmental factors such as temperature, light intensity, and the amount of water available can affect photosynthesis.

Cell Energy Cycle

6.2.9: Identify the reactants and the products in equations that represent photosynthesis and cellular respiration. Explain how the equations demonstrate the Law of Conservation of Matter and Energy in terms of balanced equations.

Balancing Chemical Equations
Cell Energy Cycle
Chemical Equations

6.2.10: Investigate and describe the complementary relationship (cycling of matter and the flow of energy) between photosynthesis and cellular respiration.

Carbon Cycle
Cell Energy Cycle
Food Chain

6.2.11: Recognize that during photosynthesis, plants use energy from the sun and elements from the atmosphere and the soil to make specific compounds. Recognize that these compounds are used by living things as sources of matter and energy.

Cell Energy Cycle

6.2.13: Recognize that during cellular respiration, chemical bonds between food molecules are broken (hydrolysis), and energy is transferred to ADP to create ATP (the energy storage molecule that fuels cellular processes). Acknowledge that all organisms must break the high energy chemical bonds in food molecules during cellular respiration to obtain the energy needed for life processes.

Cell Energy Cycle

6.2.14: Recognize that in general, synthesis reactions (i.e. photosynthesis) require energy while decomposition reactions (i.e. cellular respiration) usually release energy.

Cell Energy Cycle

6.2.17: Investigate how various factors (temperature, pH, enzyme/substrate concentration) affect the rate of enzyme activity.

Collision Theory

6.3: Organisms respond to internal and external cues, which allow them to survive.

6.3.2: Draw a schematic to illustrate a positive and negative feedback mechanism that regulates body systems in order to help maintain homeostasis.

Human Homeostasis
Paramecium Homeostasis

6.4: The health of humans and other organisms is affected by their interactions with each other and their environment, and may be altered by human manipulation.

6.4.4: Describe how environmental factors (e.g., UV light or the presence of carcinogens or pathogens) alter cellular functions.

Paramecium Homeostasis

7: The natural world consists of a diversity of organisms that transmit their characteristics to future generations. Living things reproduce, develop, and transmit traits, and theories of evolution explain the unity and diversity of species found on Earth. Knowledge of genetics, reproduction, and development is applied to improve agriculture and human health.

7.1: Organisms reproduce, develop, have predictable life cycles, and pass on heritable traits to their offspring.

7.1.1: Describe the relationship between DNA, genes, chromosomes and proteins.

Human Karyotyping
RNA and Protein Synthesis

7.1.2: Explain that a gene is a section of DNA that directs the synthesis of a specific protein associated with a specific trait in an organism.

RNA and Protein Synthesis

7.1.3: Trace how a DNA sequence, through transcription and translation, results in a sequence of amino acids.

RNA and Protein Synthesis

7.1.4: Demonstrate that when DNA replicates, the complementary strands separate and the old strands serve as a template for the new complementary strands. Recognize that this results in two identical strands of DNA that are exact copies of the original.

Building DNA

7.1.5: Illustrate how a sequence of DNA nucleotides codes for a specific sequence of amino acids.

RNA and Protein Synthesis

7.1.6: Use Punnett squares, including dihybrid crosses, and pedigree charts to determine probabilities and patterns of inheritance (i.e. dominant/recessive, co-dominance, sex-linkage, multi-allele inheritance).

Chicken Genetics
Hardy-Weinberg Equilibrium
Microevolution

7.1.7: Analyze a karyotype to determine chromosome numbers and pairs. Compare and contrast normal and abnormal karyotypes.

Human Karyotyping

7.1.9: Describe how exposure to radiation, chemicals and pathogens can increase mutations.

Evolution: Natural and Artificial Selection

7.1.10: Explain that mutations in the DNA sequence of a gene may or may not affect the expression of the gene. Recognize that mutations may be harmful, beneficial, or have no impact on the survival of the organism.

Evolution: Mutation and Selection
Evolution: Natural and Artificial Selection

7.1.13: Describe the cell cycle as an orderly process that results in new somatic cells that contain an exact copy of the DNA that make up the genes and chromosomes found in the parent somatic cells.

Cell Division

7.2: The diversity and changing of life forms over many generations is the result of natural selection, in which organisms with advantageous traits survive, reproduce, and pass those traits to offspring.

7.2.2: Analyze natural selection simulations and use data generated from them to describe how environmentally-favored traits are perpetuated over generations resulting in species survival, while less favorable traits decrease in frequency or may lead to extinction.

Microevolution

7.2.6: Discuss how environmental pressure, genetic drift, mutation and competition for resources influence the evolutionary process. Recognize that a change in a species over time does not follow a set pattern or timeline.

Evolution: Mutation and Selection
Evolution: Natural and Artificial Selection

7.2.7: Compare and contrast the role of sexual selection to the role of natural selection on the evolutionary process.

Evolution: Mutation and Selection
Evolution: Natural and Artificial Selection

7.2.8: Relate a population's survival to the reproductive success of adapted individuals in that population.

Rainfall and Bird Beaks

7.2.9: Explain the roles of geographical isolation and natural selection on the evolution of new species.

Evolution: Mutation and Selection
Rainfall and Bird Beaks

7.2.11: Explain why homogeneous populations may be more vulnerable to environmental changes than heterogeneous populations.

Natural Selection
Rainfall and Bird Beaks

7.2.12: Explain how evolutionary relationships between species are used to group organisms together.

Dichotomous Keys

7.3: The development of technology has allowed us to apply our knowledge of genetics, reproduction, development and evolution to meet human needs and wants.

7.3.5: Explain how developments in technology (e.g., gel electrophoresis) have been used to identify individuals based on DNA as well as to improve the ability to diagnose genetic diseases.

DNA Analysis
Human Karyotyping

Correlation last revised: 5/9/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.