1: Conservation Laws

1.1: Attitudes

1.1.1: appreciate the need for computational competence in quantifying conservation of energy and momentum

2D Collisions
Air Track

1.1.2: accept uncertainty in the descriptions and explanations of conservation in the physical world

2D Collisions
Air Track

1.1.4: appreciate the fundamental role the principles of conservation play in our everyday world

2D Collisions
Air Track

1.1.5: appreciate the need for simplicity in scientific explanations of complex physical interactions and the role conservation laws play in many of these explanations

2D Collisions
Air Track

1.1.6: appreciate the need for accurate and honest communication of all evidence gathered in the course of an investigation related to conservation principles

2D Collisions

1.1.7: appreciate the need for empirical evidence in interpreting observed conservation phenomena

2D Collisions
Air Track

1.1.1.A: mechanical energy interactions involve changes in kinetic and potential energy, by extending energy concepts from Science 10, Unit 4, and the mechanical energy concepts and problem-solving methods studied in Physics 20, Unit 1, and by:

1.1.1.A.1: describing energy and mass as scalar quantities

Atwood Machine
Uniform Circular Motion

1.1.1.A.3: defining mechanical energy as the sum of kinetic and potential energy

Energy of a Pendulum
Inclined Plane - Rolling Objects
Inclined Plane - Sliding Objects
Roller Coaster Physics
Simple Harmonic Motion

1.1.1.A.4: solving conservation problems, using algebraic and/or graphical analysis

Inclined Plane - Sliding Objects

1.1.1.A.5: analyzing and solving, quantitatively, kinematics and dynamics problems, using mechanical energy conservation concepts by extending previous problem-solving methods.

Energy Conversion in a System
Energy of a Pendulum
Fan Cart Physics
Inclined Plane - Sliding Objects
Roller Coaster Physics

1.1.2.A: designing and performing experiments demonstrating the law of conservation of energy, and the relationship between kinetic and mechanical potential energy

Energy Conversion in a System
Energy of a Pendulum
Inclined Plane - Rolling Objects
Inclined Plane - Sliding Objects
Period of a Pendulum
Roller Coaster Physics
Simple Harmonic Motion

1.1.2.B: using free-body diagrams (force diagrams) in organizing and communicating the solutions of conservation problems

Inclined Plane - Simple Machine
Inclined Plane - Sliding Objects

1.1.3: be open-minded in evaluating potential applications of conservation principles to new technology

1.1.3.A: understanding that changes in kinetic and potential energy occur in mechanical energy interactions; and analyzing and solving, quantitatively, kinematic and dynamics problems, using mechanical energy concepts, and algebraic and/or graphical analyses; and by gathering, and graphically analyzing, relevant data inferring mathematical relationships, within the context of:

1.1.3.A.1: investigating and reporting the application of conservation principles in research and design

2D Collisions
Air Track

1.1.3.A.2: any other relevant context.

Air Track
Energy of a Pendulum
Inclined Plane - Rolling Objects
Inclined Plane - Simple Machine
Inclined Plane - Sliding Objects
Period of a Pendulum
Potential Energy on Shelves
Roller Coaster Physics
Simple Harmonic Motion

1.2: Momentum is conserved when objects interact in an isolated system.

1.2.1: Knowledge

1.2.1.A: conservation laws provide a simple means to explain interactions among objects, by:

1.2.1.A.1: describing momentum as a vector quantity

2D Collisions

1.2.1.A.2: defining momentum as a quantity of motion equal to the product of the mass and the velocity of an object

2D Collisions
Air Track
Roller Coaster Physics

1.2.1.A.3: relating Newton's laws of motion, quantitatively, to explain the concepts of impulse and a change in momentum

2D Collisions
Air Track
Atwood Machine
Fan Cart Physics
Roller Coaster Physics
Uniform Circular Motion

1.2.1.A.4: explaining, quantitatively, using vectors, that momentum appears to be conserved during one- and two-dimensional interactions in one plane among objects (the sine and cosine rules are not required)

2D Collisions
Air Track

1.2.1.A.5: defining, comparing and contrasting elastic and inelastic collisions, using quantitative examples

2D Collisions

1.2.2: Skills

1.2.2.A: performing and analyzing experiments demonstrating the conservation of momentum and the principle of impulse

2D Collisions
Air Track

1.2.2.B: approximating, estimating and predicting results of interactions, based on an understanding of the conservation laws.

2D Collisions
Air Track

1.2.3: STS Connections

1.2.3.A: understanding that the law of conservation of momentum provides a means to explain interactions among objects; and explaining, quantitatively, using vectors and one- and twodimensional interactions in one plane; and by obtaining and analyzing empirical evidence to demonstrate the conservation of momentum, and estimating and predicting results of interactions, within the context of:

1.2.3.A.1: assessing the role conservation laws and the principle of impulse play in the design and use of injury prevention devices in vehicles and sports; e.g., air bags, child restraint systems, running shoes, helmets

2D Collisions
Air Track

1.2.3.A.5: any other relevant context.

2D Collisions
Air Track

2: Electric Forces and Fields

2.1: Attitudes

2.1.6: foster a responsible attitude to environmental and social change as related to the use and production of electrical energy

Advanced Circuits

2.1.1: appreciate the need for computational competence in quantifying electrical interactions

2.1.1.A: the electrical model of matter is fundamental to the explanation of electrical interactions, by extending from Physics 20, Unit 1, and by:

2.1.1.A.1: describing matter as containing discrete positive and negative particles

Bohr Model of Hydrogen
Bohr Model: Introduction
Element Builder

2.1.1.A.3: explaining electrical interactions in terms of the law of electric charge (two types of charge: like charges repel, unlike charges attract)

Coulomb Force (Static)
Pith Ball Lab

2.2: Coulomb's law relates electric charge to electric force.

2.2.1: Knowledge

2.2.1.A: Coulomb's law explains the relationships among force, charge and separating distance, by:

2.2.1.A.1: explaining, qualitatively, the principles pertinent to Coulomb's torsion balance experiment

Coulomb Force (Static)
Pith Ball Lab

2.2.1.A.2: explaining, quantitatively, using Coulomb's law and vectors, the electrostatic interaction between discrete point charges

Coulomb Force (Static)
Pith Ball Lab

2.2.1.A.3: comparing the inverse square relationship as it is expressed by Coulomb's law and Newton's universal law of gravitation.

Coulomb Force (Static)
Gravitational Force
Pith Ball Lab

2.2.3: STS Connections

2.2.3.A: understanding that the relationships among force, charge and separating distance is explained by Coulomb's law; and explaining, quantitatively, using Coulomb's law and vectors, the electrostatic interaction between discrete point charges; and by gathering and analyzing relevant data inferring the mathematical relationships among force, charge and separating distance, within the context of:

2.2.3.A.1: comparing and contrasting the experimental designs used by Coulomb and Cavendish, in terms of the role of technology in advancing science

Coulomb Force (Static)
Pith Ball Lab

2.2.3.A.2: any other relevant context.

Coulomb Force (Static)
Pith Ball Lab

2.3: Electric field theory is a model used to explain how charges interact.

2.3.1: Knowledge

2.3.1.A: the concept of field is applied to electric interactions, by extending from Physics 20, Unit 2, the definition of field, and by:

2.3.1.A.5: predicting, using algebraic and/or graphical methods, the path followed by a moving electric charge in a uniform electric field, using kinematics and dynamics concepts

Inclined Plane - Sliding Objects

2.4: Electric circuits facilitate the use of electric energy.

2.4.1: Knowledge

2.4.1.A: Ohm's law and Kirchhoff 's rules are fundamental to explaining simple electric circuits, by:

2.4.1.A.1: defining current, potential difference, resistance and power, using appropriate terminology

Advanced Circuits
Household Energy Usage

2.4.1.A.2: defining the ampere as a fundamental SI unit, and relating the coulomb and second to it

Advanced Circuits

2.4.1.A.4: explaining Ohm's law as an empirical, rather than a theoretical, relationship

Advanced Circuits

2.4.1.A.5: quantifying electrical energy and power dissipated in a resistor, using Ohm's law

Advanced Circuits
Household Energy Usage

2.4.1.A.7: analyzing, quantitatively, simple series and/or parallel DC circuits in terms of the variables of potential difference, current and resistance, using Kirchhoff 's rules and/or Ohm's law (solutions requiring Kirchhoff 's rules to be limited to networks containing two power supplies and three branch currents).

Advanced Circuits
Circuits

2.4.2: Skills

2.4.2.A: determining, from empirical and theoretical evidence, the relationships among electric energy/power, current, resistance and voltage

Advanced Circuits
Household Energy Usage

2.4.2.B: performing an experiment to explain the relationships among current, voltage and resistance

Advanced Circuits
Circuits

2.4.2.C: designing, analyzing and solving simple resistive DC circuits

Advanced Circuits
Circuits

2.4.2.D: drawing diagrams of simple resistive DC circuits, using accepted symbols for circuit components

Advanced Circuits
Circuits

2.4.2.E: designing and performing an experiment demonstrating the heating effect of electric energy.

Advanced Circuits
Circuits

2.4.3: STS Connections

2.4.3.A: understanding and analyzing, quantitatively, simple series and parallel circuits in terms of Ohm's law and Kirchhoff 's rules; and quantifying electrical energy and power dissipated in a resistor, using Ohm's law; and by determining, from empirical and theoretical evidence the relationships among electric energy/power, current, resistance and voltage, within the context of:

2.4.3.A.2: comparing and contrasting electrical energy with other energy sources with respect to such factors as cost, energy potential, risks and benefits to society, safety concerns and their impact on the quality of life of future generations

Advanced Circuits

2.4.3.A.3: analyzing the use of series and parallel networks in household circuits in terms of the problems addressed

Advanced Circuits
Circuits

2.4.3.A.4: investigating the need for and the functioning of circuit breakers in household circuits

Advanced Circuits
Circuits

2.4.3.A.7: any other relevant context.

Advanced Circuits
Circuits

3: Magnetic Forces and Fields

3.2: Electromagnetism pervades the Universe.

3.2.1: Knowledge

3.2.1.A: magnetic forces and fields are described in relation to electric currents, by extending electromagnetic concepts from Science 9, Unit 4, and by:

3.2.1.A.10: discussing, qualitatively, Lenz's law in terms of conservation of energy; describing, giving examples, situations where Lenz's law applies.

Energy of a Pendulum

3.3: Electromagnetic radiation is a physical manifestation of the interaction of electricity and magnetism.

3.3.1: Knowledge

3.3.1.A: Maxwell's theory of electromagnetism expanded on Oersted's and Faraday's generalizations, by:

3.3.1.A.2: comparing and contrasting the constituents of the electromagnetic spectrum on the basis of frequency, wavelength and energy

Photoelectric Effect

3.3.1.A.3: solving problems algebraically, using the relationships among speed, wavelength, frequency, period and/or distance, of electromagnetic waves

Sound Beats and Sine Waves

3.3.2: Skills

3.3.2.B: predicting the conditions required for electromagnetic radiation emission.

Bohr Model of Hydrogen
Bohr Model: Introduction

4: Nature of Matter

4.1: Attitudes

4.1.3: STS Connections

4.1.3.A: understanding and explaining how technological advances and experimental evidence contributed to the formulation of models of the atom; and by determining the charge to mass ratio of the electron, and the mass of an electron and/or ion, given appropriate empirical data, within the context of:

4.1.3.A.3: any other relevant context.

Bohr Model of Hydrogen
Bohr Model: Introduction
Element Builder

4.2: The photoelectric effect requires the adoption of the photon model of light.

4.2.1: Knowledge

4.2.1.A: the quantum concept is required to explain adequately some natural phenomena, by extending from Physics 20, Unit 4, and by:

4.2.1.A.2: defining the photon as a quantum of electromagnetic radiation

Bohr Model of Hydrogen
Bohr Model: Introduction
Photoelectric Effect

4.2.1.A.3: describing how Hertz discovered the photoelectric effect while investigating electromagnetic waves

Photoelectric Effect

4.2.1.A.4: explaining the photoelectric effect in terms of the intensity and wavelength of the incident light and surface material

Photoelectric Effect

4.2.1.A.5: assessing the assumptions made by Einstein in explaining the photoelectric effect

Photoelectric Effect

4.2.1.A.6: defining threshold frequency as the minimum frequency giving rise to the photoelectric effect; and work function as the energy binding an electron to a photoelectric surface

Photoelectric Effect

4.2.1.A.7: explaining the relationship between the kinetic energy of a photoelectron and stopping voltage

Photoelectric Effect

4.2.1.A.9: describing the photoelectric effect as a phenomenon that supports the notion of the wave-particle duality of electromagnetic radiation

Bohr Model of Hydrogen
Bohr Model: Introduction
Photoelectric Effect

4.2.1.A.10: explaining X-ray production as an inverse photoelectric effect, and predicting, quantitatively, the short wavelength limit of X-rays produced, given appropriate data

Photoelectric Effect

4.2.1.A.11: explaining, qualitatively, the Compton effect and the de Broglie hypothesis applying the laws of mechanics, conservation of momentum and energy, to photons, as another example of wave-particle duality.

2D Collisions
Photoelectric Effect

4.2.2: Skills

4.2.2.A: performing an experiment demonstrating the photoelectric effect and interpreting the data obtained

Photoelectric Effect

4.2.2.B: predicting and verifying the effect that changing the intensity and/or frequency of the incident radiation or the material of the photocathode has on photoelectric emission.

Photoelectric Effect

4.2.3: STS Connections

4.2.3.A: understanding that an adequate explanation of some natural phenomena requires the quantum concept; and describing the photoelectric effect as evidence for the notion of wave-particle duality of electromagnetic radiation; and by investigating, empirically, the photoelectric effect, within the context of:

4.2.3.A.1: analyzing, in general terms, the functioning of various technological applications of the photoelectric effect to solve practical problems; e.g., automatic door openers, burglar alarms, light meters, smoke detectors

Photoelectric Effect

4.2.3.A.2: discussing why the photoelectric effect could not be explained, using the wave model of electromagnetic radiation, and thus required a new hypothesis

Photoelectric Effect

4.2.3.A.4: any other relevant context.

Photoelectric Effect

4.3: Nuclear fission and fusion are nature's most powerful energy sources.

4.3.1: Knowledge

4.3.1.A: the processes of nuclear fission and fusion are nature's most powerful energy sources, by:

4.3.1.A.1: using the isotope notation to describe and identify common nuclear isotopes, and determine the number of each nucleon of an atom

Element Builder
Nuclear Decay

4.3.1.A.2: describing the nature and behaviour of alpha, beta and gamma radiation

Nuclear Decay

4.3.1.A.3: writing nuclear equations for alpha and beta decay

Nuclear Decay

4.3.1.A.4: performing simple, nonlogarithmic, half-life calculations

Half-life

4.3.1.A.5: predicting the particles emitted by a nucleus from the examination of representative transmutation equations

Nuclear Decay

4.3.1.A.9: relating, qualitatively, the mass defect of the nucleus to the energy released in nuclear reactions.

Nuclear Decay

4.3.2: Skills

4.3.2.C: graphing data for radioactive decay and interpolating values for half-life

Exponential Growth and Decay - Activity B
Half-life

4.3.2.D: interpreting some common nuclear decay chains

Nuclear Decay

4.3.3: STS Connections

4.3.3.A: understanding that the processes of nuclear fission and fusion are nature's most powerful energy sources; and describing the nature of particle radiation and nuclear decay, and explaining, qualitatively, the importance of the concept of mass-energy equivalence in nuclear reaction processes; and by analyzing empirical nuclear decay data, and performing a risk/benefit analysis of a nuclear energy application, within the context of:

4.3.3.A.6: any other relevant context.

Nuclear Decay

4.4: Energy levels in nature support modern atomic theory.

4.4.1: Knowledge

4.4.1.A: the Rutherford-Bohr model of the atom represents a synthesis of classical and quantum concepts, by:

4.4.1.A.1: explaining, qualitatively, the significance of the results of Rutherford's scattering experiment in terms of the nature and role of the nucleons; and the size and mass of the nucleus and the atom, which lead to the proposal of a planetary model of the atom

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.1.A.2: explaining why Maxwell's theory of electromagnetism predicts the failure of a planetary model of the atom

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.1.A.3: describing why each element has a unique line spectrum, and comparing and contrasting the characteristics of continuous and line spectra

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.1.A.4: explaining, qualitatively, the conditions necessary to produce line emission and line absorption spectra

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.1.A.5: explaining the quantum implications of the line absorption and the line emission spectra, and determining any variable in the Balmer equation 1/l = RH (1/nf2 -1/ni2)

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.1.A.6: explaining Bohr's concept of "stationary states" and their relationship to line spectra of atoms; and using the frequency/wavelength of an emitted photon to determine the energy difference between states

Bohr Model of Hydrogen
Bohr Model: Introduction
Photoelectric Effect

4.4.1.A.7: explaining the relationship between hydrogen's absorption spectrum and its energy levels

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.1.A.8: describing how the Bohr atom can be used to predict the ionization energy of hydrogen, and to calculate the allowed radii of the hydrogen atom

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.1.A.9: describing how the Rutherford-Bohr model has been further refined, by applying quantum concepts to a purely mathematical model based on probability and waves

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.1.A.10: comparing and contrasting, qualitatively, the Rutherford, the Bohr and the quantum model of the atom.

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.2: Skills

4.4.2.A: observing representative line spectra of selected elements

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.2.B: predicting the conditions necessary to produce and observe line emission and line absorption spectra

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.2.C: predicting the potential energy transitions in the hydrogen atom, using a labelled diagram showing the energy levels.

Potential Energy on Shelves

4.4.3: STS Connections

4.4.3.A: understanding that the Rutherford-Bohr model offers a restricted explanation of the structure of the atom, and that a mathematical model provides a fuller explanation of the empirical evidence of energy levels within the atom; and by observing line spectra and predicting potential energy transition in an atom, within the context of:

4.4.3.A.1: investigating and reporting on the use of line spectra in the study of the Universe and the identification of substances

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.3.A.2: describing the functioning of lasers in terms of energy level transitions and resonance

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.3.A.3: investigating and reporting on the application of spectra concepts in the design and functioning of lighting devices; e.g., street lights, signs

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.3.A.5: investigating and reporting on the contributions made by scientists to the development of the early quantum theory; e.g., Hertz, Planck, Einstein, Bohr, Compton, Davisson, Germer

Bohr Model of Hydrogen
Bohr Model: Introduction

4.4.3.A.6: any other relevant context.

Bohr Model of Hydrogen
Bohr Model: Introduction
Covalent Bonds
Electron Configuration
Ionic Bonds

Correlation last revised: 2/26/2010

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.