Viewing All Free Gizmos Virtual Labs and Simulations

Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights.

Beam to Moon (Ratios and Proportions)

Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights.

Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe.

Big Bang Theory - Hubble's Law

Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe.

Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea.

Circulatory System

Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea.

Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them?

City Tour (Coordinates)

Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them?

Observe the spread of disease through a group of people. The methods of transmission can be chosen and include person-to-person, airborne, and foodborne as well as any combination thereof. The probability of each form of transmission and number of people in the group can also be adjusted.

Disease Spread

Observe the spread of disease through a group of people. The methods of transmission can be chosen and include person-to-person, airborne, and foodborne as well as any combination thereof. The probability of each form of transmission and number of people in the group can also be adjusted.

Observe solar and lunar eclipses as the Moon orbits Earth. The full and partial shadows of the Moon and Earth can be displayed, and the Moon can also be dragged around Earth. See what the Moon and Sun look like from Earth during partial and total eclipses.

Eclipse

Observe solar and lunar eclipses as the Moon orbits Earth. The full and partial shadows of the Moon and Earth can be displayed, and the Moon can also be dragged around Earth. See what the Moon and Sun look like from Earth during partial and total eclipses.

Explore fractions using the Fractionator, the machine that makes fraction tiles. Compare fractions and find equivalent fractions by arranging the tiles on two horizontal rows. Explore simplifying fractions. Add fractions and express sums as improper fractions or mixed numbers.

Equivalent Fractions (Fraction Tiles)

Explore fractions using the Fractionator, the machine that makes fraction tiles. Compare fractions and find equivalent fractions by arranging the tiles on two horizontal rows. Explore simplifying fractions. Add fractions and express sums as improper fractions or mixed numbers.

Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features.

Erosion Rates

Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features.

Observe how different colors of light are reflected or absorbed by colored objects. Determine that white light is a combination of different colors of light, and that one or more component colors may be reflected when white light is shone on an object. Understand that we see an object when light reflected from the object enters our eye.

Eyes and Vision 1 - Seeing Color

Observe how different colors of light are reflected or absorbed by colored objects. Determine that white light is a combination of different colors of light, and that one or more component colors may be reflected when white light is shone on an object. Understand that we see an object when light reflected from the object enters our eye.

Grow Wisconsin Fast Plants^{®} in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants.

Fast Plants^{®} 1 - Growth and Genetics

Grow Wisconsin Fast Plants^{®} in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants.

In this follow-up to Fast Plants^{®} 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits.

Fast Plants^{®} 2 - Mystery Parent

In this follow-up to Fast Plants^{®} 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits.

Collect fingerprints from simulated crime scenes using a camera, fingerprinting powder, and tape. Classify fingerprints into groups and subgroups, then identify minutiae. Match collected prints to the fingerprints of suspects to identify who left prints at the scene of the crime.

Fingerprinting

Collect fingerprints from simulated crime scenes using a camera, fingerprinting powder, and tape. Classify fingerprints into groups and subgroups, then identify minutiae. Match collected prints to the fingerprints of suspects to identify who left prints at the scene of the crime.

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind.

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind.

Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact.

Household Energy Usage

Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact.

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed.

Human Evolution - Skull Analysis

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed.

Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red.

Identifying Nutrients

Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red.

Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently.

Improper Fractions and Mixed Numbers

Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently.

Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used.

Laser Reflection

Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used.

A brand new school is opening and it is time to elect the school mascot! Students can choose the Eagle, Lion, Bear, or Wolf. Voting results can be displayed in a table, tally chart, pictograph, bar graph, circle graph, or dot plot. You can change student votes by selecting a group of students and clicking a mascot.

Mascot Election (Pictographs and Bar Graphs)

A brand new school is opening and it is time to elect the school mascot! Students can choose the Eagle, Lion, Bear, or Wolf. Voting results can be displayed in a table, tally chart, pictograph, bar graph, circle graph, or dot plot. You can change student votes by selecting a group of students and clicking a mascot.

See how muscles, bones, and connective tissue work together to allow movement. Observe how muscle contraction arises from the interactions of thin and thick filaments in muscle cells. Using what you have learned, construct an arm that can lift a weight or throw a ball. Connective tissue, muscle composition, bone length, and tendon insertion point can all be manipulated to create an arm to lift the heaviest weight or throw a ball the fastest.

Muscles and Bones

See how muscles, bones, and connective tissue work together to allow movement. Observe how muscle contraction arises from the interactions of thin and thick filaments in muscle cells. Using what you have learned, construct an arm that can lift a weight or throw a ball. Connective tissue, muscle composition, bone length, and tendon insertion point can all be manipulated to create an arm to lift the heaviest weight or throw a ball the fastest.

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles.

Nuclear Decay

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles.

Live a frog's life as you hop along a number line in search of flies. Learn how addition and subtraction can be represented as movement along a number line. Fred the frog may even help you get better at adding and subtracting two-digit numbers in your head by decomposing them into tens and ones.

Number Line Frog Hop (Addition and Subtraction)

Live a frog's life as you hop along a number line in search of flies. Learn how addition and subtraction can be represented as movement along a number line. Fred the frog may even help you get better at adding and subtracting two-digit numbers in your head by decomposing them into tens and ones.

Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups.

Periodic Trends

Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups.

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels.

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels.

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response.

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response.

As factory belt operator, your job is to move boxes just the right distance on the belt, so they can be stamped for delivery. Your only controls are the radius and rotation of the belt’s wheel. How do you set these to get the distance right? See how this relates to arc length, and discover how radians help make this task easier.

Radians

As factory belt operator, your job is to move boxes just the right distance on the belt, so they can be stamped for delivery. Your only controls are the radius and rotation of the belt’s wheel. How do you set these to get the distance right? See how this relates to arc length, and discover how radians help make this task easier.

Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation.

Rational Functions

Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation.

Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form.

Simplifying Algebraic Expressions I

Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form.

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line.

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line.

Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel.

Spin the Big Wheel! (Probability)

Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel.

Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid.

Surface and Lateral Areas of Pyramids and Cones

Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid.

Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response.

Systems of Linear Inequalities (Slope-intercept form)

Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response.

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go.

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go.

Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage.

Wheel and Axle

Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage.

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problem.

STEM Cases take between 30 - 90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

About Handbooks

Handbooks contain the same content, including questions and assessments, from the Handbook inside the STEM Case.

Handbooks are standalone versions of the Handbook section of the related STEM Case. They cover the relevant science content, but without the real-world problem to solve.

Each Handbook uses realtime reporting to show live student results.

Handbooks take roughly half as long as the relevant STEM Case to complete.

Multiple grade-appropriate versions are available for each Handbook.